串联
材料科学
钙钛矿(结构)
带隙
光电子学
能量转换效率
富勒烯
纳米技术
化学工程
复合材料
化学
工程类
有机化学
作者
Hongfei Sun,Ke Xiao,Han Gao,Chenyang Duan,Siyang Zhao,Jin Wen,Yurui Wang,Renxing Lin,Xuntian Zheng,Haowen Luo,Chenshuaiyu Liu,Pu Wu,Wenchi Kong,Zhou Liu,Ludong Li,Hairen Tan
标识
DOI:10.1002/adma.202308706
摘要
Abstract All‐perovskite tandem solar cells offer the potential to surpass the Shockley–Queisser (SQ) limit efficiency of single‐junction solar cells while maintaining the advantages of low‐cost and high‐productivity solution processing. However, scalable solution processing of electron transport layer (ETL) in p‐i‐n structured perovskite solar subcells remains challenging due to the rough perovskite film surface and energy level mismatch between ETL and perovskites. Here, scalable solution processing of hybrid fullerenes (HF) with blade‐coating on both wide‐bandgap (≈1.80 eV) and narrow‐bandgap (≈1.25 eV) perovskite films in all‐perovskite tandem solar modules is developed. The HF, comprising a mixture of fullerene (C 60 ), phenyl C 61 butyric acid methyl ester, and indene‐C 60 bisadduct, exhibits improved conductivity, superior energy level alignment with both wide‐ and narrow‐bandgap perovskites, and reduced interfacial nonradiative recombination when compared to the conventional thermal‐evaporated C 60 . With scalable solution‐processed HF as the ETLs, the all‐perovskite tandem solar modules achieve a champion power conversion efficiency of 23.3% (aperture area = 20.25 cm 2 ). This study paves the way to all‐solution processing of low‐cost and high‐efficiency all‐perovskite tandem solar modules in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI