已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning algorithms to predict major adverse cardiovascular events in patients with diabetes

狼牙棒 医学 内科学 心肌梗塞 逻辑回归 2型糖尿病 糖尿病 算法 2型糖尿病 血尿素氮 冲程(发动机) 肌酐 心脏病学 计算机科学 内分泌学 传统PCI 机械工程 工程类
作者
Tadesse Melaku Abegaz,Ahmead Baljoon,Oluwaseun Kilanko,Fatimah Sherbeny,Askal Ayalew Ali
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107289-107289 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107289
摘要

Major Adverse Cardiovascular Events (MACE) are common complications of type 2 diabetes mellitus (T2DM) that include myocardial infarction (MI), stroke, and heart failure (HF). The objective of the current study was to predict MACE among T2DM patients.Type 2 diabetes mellitus patients above 18 years old were recruited for the study from the All of Us Research Program. Eligible participants were those who took sodium-glucose cotransporter 2 inhibitors. Different Machine learning algorithms: including RandomForest (RF), XGBoost, logistic regression (LR), and weighted ensemble model (WEM) were employed. Clinical attributes, electrolytes and biomarkers were explored in predicting MACE. The feature importance was determined using mean decrease accuracy.Overall, 9, 059 subjects were included in the analyses, of which 5197 (57.4%) were females. The XGBoost Model demonstrated a prediction accuracy of 0.80 [0.78-0.82], which is higher as compared to the RF 0.78[0.76-0.80], the LR model 0.65 [0.62-0.67], and the WEM 0.75 [0.73-0.76], respectively. The classification accuracy of the models for stroke was more than 95%, which was higher than prediction accuracy for MI (∼85%), and HF (∼80%). Phosphate, blood urea nitrogen and troponin levels were the major predictors of MACE.The ML models had shown acceptable performance in predicting MACE in T2DM patients, except the LR model. Phosphate, blood urea nitrogen, and other electrolytes were important predictors of MACE, which is consistent between the individual components of MACE, such as stroke, MI, and HF. These parameters can be calibrated as prognostic parameters of MACE events in T2DM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助昴昴昴采纳,获得10
1秒前
李爱国应助ChuanjiWu采纳,获得10
1秒前
万能图书馆应助虚幻初之采纳,获得10
2秒前
2秒前
SciGPT应助Manbo采纳,获得10
3秒前
博修发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
rynchee完成签到 ,获得积分0
8秒前
怕黑面包完成签到 ,获得积分10
8秒前
8秒前
Emma完成签到 ,获得积分10
10秒前
yiner520完成签到,获得积分10
12秒前
胖Q发布了新的文献求助10
12秒前
X先生完成签到 ,获得积分10
13秒前
活泼的阁发布了新的文献求助10
16秒前
FFFFFF完成签到 ,获得积分10
17秒前
Jasper应助胖Q采纳,获得10
20秒前
江河湖海发布了新的文献求助10
21秒前
24秒前
dong应助清秀的白昼采纳,获得10
24秒前
赘婿应助焕颜采纳,获得10
27秒前
28秒前
XXH发布了新的文献求助10
28秒前
农夫发布了新的文献求助10
34秒前
34秒前
34秒前
澄子完成签到 ,获得积分10
35秒前
缓慢的凝云完成签到,获得积分10
36秒前
37秒前
37秒前
一个有点长的序完成签到 ,获得积分10
38秒前
ljy阿完成签到 ,获得积分10
39秒前
8531发布了新的文献求助10
39秒前
40秒前
40秒前
40秒前
SiO2完成签到 ,获得积分10
42秒前
苏打完成签到 ,获得积分10
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024