Machine learning algorithms to predict major adverse cardiovascular events in patients with diabetes

狼牙棒 医学 内科学 心肌梗塞 逻辑回归 2型糖尿病 糖尿病 算法 2型糖尿病 血尿素氮 冲程(发动机) 肌酐 心脏病学 计算机科学 内分泌学 传统PCI 机械工程 工程类
作者
Tadesse Melaku Abegaz,Ahmead Baljoon,Oluwaseun Kilanko,Fatimah Sherbeny,Askal Ayalew Ali
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107289-107289 被引量:7
标识
DOI:10.1016/j.compbiomed.2023.107289
摘要

Major Adverse Cardiovascular Events (MACE) are common complications of type 2 diabetes mellitus (T2DM) that include myocardial infarction (MI), stroke, and heart failure (HF). The objective of the current study was to predict MACE among T2DM patients.Type 2 diabetes mellitus patients above 18 years old were recruited for the study from the All of Us Research Program. Eligible participants were those who took sodium-glucose cotransporter 2 inhibitors. Different Machine learning algorithms: including RandomForest (RF), XGBoost, logistic regression (LR), and weighted ensemble model (WEM) were employed. Clinical attributes, electrolytes and biomarkers were explored in predicting MACE. The feature importance was determined using mean decrease accuracy.Overall, 9, 059 subjects were included in the analyses, of which 5197 (57.4%) were females. The XGBoost Model demonstrated a prediction accuracy of 0.80 [0.78-0.82], which is higher as compared to the RF 0.78[0.76-0.80], the LR model 0.65 [0.62-0.67], and the WEM 0.75 [0.73-0.76], respectively. The classification accuracy of the models for stroke was more than 95%, which was higher than prediction accuracy for MI (∼85%), and HF (∼80%). Phosphate, blood urea nitrogen and troponin levels were the major predictors of MACE.The ML models had shown acceptable performance in predicting MACE in T2DM patients, except the LR model. Phosphate, blood urea nitrogen, and other electrolytes were important predictors of MACE, which is consistent between the individual components of MACE, such as stroke, MI, and HF. These parameters can be calibrated as prognostic parameters of MACE events in T2DM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
刚刚
1秒前
1秒前
雪落完成签到,获得积分10
2秒前
科目三应助寒冷海云采纳,获得10
2秒前
3秒前
蔡小葵发布了新的文献求助10
4秒前
hellohi完成签到,获得积分10
5秒前
6秒前
五个字的下午完成签到,获得积分10
6秒前
9秒前
9秒前
晶晶完成签到,获得积分10
9秒前
9秒前
Niuma完成签到,获得积分10
10秒前
无心打扰完成签到 ,获得积分10
11秒前
义气断缘发布了新的文献求助30
13秒前
zz完成签到,获得积分10
14秒前
14秒前
11完成签到,获得积分20
14秒前
LY完成签到 ,获得积分10
14秒前
15秒前
18秒前
小肉球完成签到 ,获得积分10
19秒前
ZrY发布了新的文献求助10
19秒前
19秒前
20秒前
科研通AI2S应助abner采纳,获得10
20秒前
kilig完成签到 ,获得积分10
23秒前
25秒前
insane发布了新的文献求助10
27秒前
所所应助小任采纳,获得10
27秒前
陈泓宇发布了新的文献求助10
28秒前
Hello应助搞怪平凡采纳,获得10
29秒前
万能图书馆应助wxyllxx采纳,获得10
36秒前
义气断缘完成签到,获得积分20
36秒前
开心应助小可几何采纳,获得10
37秒前
杰哥完成签到,获得积分10
38秒前
七个丸子完成签到,获得积分10
39秒前
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023