Machine learning algorithms to predict major adverse cardiovascular events in patients with diabetes

狼牙棒 医学 内科学 心肌梗塞 逻辑回归 2型糖尿病 糖尿病 算法 2型糖尿病 血尿素氮 冲程(发动机) 肌酐 心脏病学 计算机科学 内分泌学 传统PCI 机械工程 工程类
作者
Tadesse Melaku Abegaz,Ahmead Baljoon,Oluwaseun Kilanko,Fatimah Sherbeny,Askal Ayalew Ali
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107289-107289 被引量:18
标识
DOI:10.1016/j.compbiomed.2023.107289
摘要

Major Adverse Cardiovascular Events (MACE) are common complications of type 2 diabetes mellitus (T2DM) that include myocardial infarction (MI), stroke, and heart failure (HF). The objective of the current study was to predict MACE among T2DM patients.Type 2 diabetes mellitus patients above 18 years old were recruited for the study from the All of Us Research Program. Eligible participants were those who took sodium-glucose cotransporter 2 inhibitors. Different Machine learning algorithms: including RandomForest (RF), XGBoost, logistic regression (LR), and weighted ensemble model (WEM) were employed. Clinical attributes, electrolytes and biomarkers were explored in predicting MACE. The feature importance was determined using mean decrease accuracy.Overall, 9, 059 subjects were included in the analyses, of which 5197 (57.4%) were females. The XGBoost Model demonstrated a prediction accuracy of 0.80 [0.78-0.82], which is higher as compared to the RF 0.78[0.76-0.80], the LR model 0.65 [0.62-0.67], and the WEM 0.75 [0.73-0.76], respectively. The classification accuracy of the models for stroke was more than 95%, which was higher than prediction accuracy for MI (∼85%), and HF (∼80%). Phosphate, blood urea nitrogen and troponin levels were the major predictors of MACE.The ML models had shown acceptable performance in predicting MACE in T2DM patients, except the LR model. Phosphate, blood urea nitrogen, and other electrolytes were important predictors of MACE, which is consistent between the individual components of MACE, such as stroke, MI, and HF. These parameters can be calibrated as prognostic parameters of MACE events in T2DM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奋斗灵凡完成签到,获得积分10
1秒前
1秒前
等乙天发布了新的文献求助10
2秒前
3秒前
猪米妮发布了新的文献求助10
3秒前
3秒前
4秒前
涂涂发布了新的文献求助10
5秒前
Dong发布了新的文献求助10
7秒前
8秒前
科研通AI6应助00采纳,获得10
8秒前
9秒前
嘿嘿发布了新的文献求助10
10秒前
10秒前
tuanheqi发布了新的文献求助20
12秒前
顺利兰完成签到,获得积分10
12秒前
浮游应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
东木应助科研通管家采纳,获得20
13秒前
浮游应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
A健应助科研通管家采纳,获得10
13秒前
sleep应助科研通管家采纳,获得20
13秒前
浮游应助科研通管家采纳,获得10
13秒前
优雅莞应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
pyh发布了新的文献求助10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
gyf应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
东木应助科研通管家采纳,获得20
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536760
求助须知:如何正确求助?哪些是违规求助? 4624404
关于积分的说明 14591829
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480743
关于科研通互助平台的介绍 1451989