Machine learning algorithms to predict major adverse cardiovascular events in patients with diabetes

狼牙棒 医学 内科学 心肌梗塞 逻辑回归 2型糖尿病 糖尿病 算法 2型糖尿病 血尿素氮 冲程(发动机) 肌酐 心脏病学 计算机科学 内分泌学 传统PCI 机械工程 工程类
作者
Tadesse Melaku Abegaz,Ahmead Baljoon,Oluwaseun Kilanko,Fatimah Sherbeny,Askal Ayalew Ali
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107289-107289 被引量:18
标识
DOI:10.1016/j.compbiomed.2023.107289
摘要

Major Adverse Cardiovascular Events (MACE) are common complications of type 2 diabetes mellitus (T2DM) that include myocardial infarction (MI), stroke, and heart failure (HF). The objective of the current study was to predict MACE among T2DM patients.Type 2 diabetes mellitus patients above 18 years old were recruited for the study from the All of Us Research Program. Eligible participants were those who took sodium-glucose cotransporter 2 inhibitors. Different Machine learning algorithms: including RandomForest (RF), XGBoost, logistic regression (LR), and weighted ensemble model (WEM) were employed. Clinical attributes, electrolytes and biomarkers were explored in predicting MACE. The feature importance was determined using mean decrease accuracy.Overall, 9, 059 subjects were included in the analyses, of which 5197 (57.4%) were females. The XGBoost Model demonstrated a prediction accuracy of 0.80 [0.78-0.82], which is higher as compared to the RF 0.78[0.76-0.80], the LR model 0.65 [0.62-0.67], and the WEM 0.75 [0.73-0.76], respectively. The classification accuracy of the models for stroke was more than 95%, which was higher than prediction accuracy for MI (∼85%), and HF (∼80%). Phosphate, blood urea nitrogen and troponin levels were the major predictors of MACE.The ML models had shown acceptable performance in predicting MACE in T2DM patients, except the LR model. Phosphate, blood urea nitrogen, and other electrolytes were important predictors of MACE, which is consistent between the individual components of MACE, such as stroke, MI, and HF. These parameters can be calibrated as prognostic parameters of MACE events in T2DM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡化蛹发布了新的文献求助30
刚刚
科研一号发布了新的文献求助10
刚刚
努力学习完成签到,获得积分10
1秒前
没有下不到的文献完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
烟花应助bmj采纳,获得10
2秒前
大模型应助坦率晓霜采纳,获得10
3秒前
3秒前
3秒前
pluto应助ichia采纳,获得10
3秒前
wwwwww关注了科研通微信公众号
4秒前
6秒前
6秒前
7秒前
李爱国应助熬夜拜拜采纳,获得10
7秒前
煎饼狗子发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
MO发布了新的文献求助10
10秒前
10秒前
芪苓关注了科研通微信公众号
11秒前
老实的百招完成签到,获得积分10
11秒前
xwt发布了新的文献求助10
12秒前
12秒前
张巨锋发布了新的文献求助10
13秒前
jiabangou发布了新的文献求助10
13秒前
15秒前
15秒前
乐乐应助Wguan采纳,获得10
15秒前
15秒前
完美世界应助Archer采纳,获得10
15秒前
16秒前
LLSSLL完成签到,获得积分10
16秒前
崔宇完成签到,获得积分10
17秒前
17秒前
明亮的海冬完成签到,获得积分10
18秒前
嘻嘻哈哈完成签到,获得积分10
18秒前
阿珊完成签到,获得积分10
18秒前
熬夜拜拜发布了新的文献求助10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186