亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning for Large-Scale Optimization in 6G Wireless Networks

计算机科学 人工智能 机器学习 比例(比率) 无线网络 无线 地理 地图学 电信
作者
Yandong Shi,Lixiang Lian,Yuanming Shi,Zixin Wang,Yong Zhou,Liqun Fu,Lin Bai,Jun Zhang,Wei Zhang
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (4): 2088-2132 被引量:51
标识
DOI:10.1109/comst.2023.3300664
摘要

The sixth generation (6G) wireless systems are envisioned to enable the paradigm shift from "connected things" to "connected intelligence", featured by ultra high density, large-scale, dynamic heterogeneity, diversified functional requirements, and machine learning capabilities, which leads to a growing need for highly efficient intelligent algorithms. The classic optimization-based algorithms usually require highly precise mathematical model of data links and suffer from poor performance with high computational cost in realistic 6G applications. Based on domain knowledge (e.g., optimization models and theoretical tools), machine learning (ML) stands out as a promising and viable methodology for many complex large-scale optimization problems in 6G, due to its superior performance, computational efficiency, scalability, and generalizability. In this paper, we systematically review the most representative "learning to optimize" techniques in diverse domains of 6G wireless networks by identifying the inherent feature of the underlying optimization problem and investigating the specifically designed ML frameworks from the perspective of optimization. In particular, we will cover algorithm unrolling, learning to branch-and-bound, graph neural network for structured optimization, deep reinforcement learning for stochastic optimization, end-to-end learning for semantic optimization, as well as wireless federated learning for distributed optimization, which are capable of addressing challenging large-scale problems arising from a variety of crucial wireless applications. Through the in-depth discussion, we shed light on the excellent performance of ML-based optimization algorithms with respect to the classical methods, and provide insightful guidance to develop advanced ML techniques in 6G networks. Neural network design, theoretical tools of different ML methods, implementation issues, as well as challenges and future research directions are also discussed to support the practical use of the ML model in 6G wireless networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴茂林完成签到,获得积分10
1秒前
倪妮完成签到,获得积分10
5秒前
7秒前
倪妮发布了新的文献求助10
8秒前
11秒前
11秒前
朱志伟发布了新的文献求助10
13秒前
同仁堂在逃人参完成签到 ,获得积分10
14秒前
15秒前
16秒前
taku完成签到 ,获得积分10
16秒前
16秒前
朱志伟完成签到,获得积分10
19秒前
威武板栗完成签到,获得积分20
20秒前
欣喜的诗筠完成签到 ,获得积分10
20秒前
浮游应助科研通管家采纳,获得10
21秒前
嘻嘻哈哈应助科研通管家采纳,获得10
21秒前
Criminology34应助科研通管家采纳,获得10
21秒前
嘻嘻哈哈应助科研通管家采纳,获得10
21秒前
Criminology34应助科研通管家采纳,获得10
21秒前
Criminology34应助科研通管家采纳,获得10
21秒前
Criminology34应助科研通管家采纳,获得20
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
22秒前
komorebi发布了新的文献求助10
22秒前
陈词丶完成签到,获得积分10
25秒前
27秒前
思源应助hush采纳,获得10
30秒前
落后钢铁侠完成签到 ,获得积分10
32秒前
white完成签到 ,获得积分10
34秒前
梦玲完成签到 ,获得积分10
36秒前
37秒前
天真冷安完成签到,获得积分10
39秒前
39秒前
今后应助komorebi采纳,获得10
41秒前
月亮啊完成签到 ,获得积分10
42秒前
自信的汉堡完成签到,获得积分10
45秒前
Aurora发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301672
求助须知:如何正确求助?哪些是违规求助? 4449154
关于积分的说明 13847930
捐赠科研通 4335215
什么是DOI,文献DOI怎么找? 2380208
邀请新用户注册赠送积分活动 1375181
关于科研通互助平台的介绍 1341185