Machine Learning for Large-Scale Optimization in 6G Wireless Networks

计算机科学 人工智能 机器学习 比例(比率) 无线网络 无线 地理 地图学 电信
作者
Yandong Shi,Lixiang Lian,Yuanming Shi,Zixin Wang,Yong Zhou,Liqun Fu,Lin Bai,Jun Zhang,Wei Zhang
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (4): 2088-2132 被引量:51
标识
DOI:10.1109/comst.2023.3300664
摘要

The sixth generation (6G) wireless systems are envisioned to enable the paradigm shift from "connected things" to "connected intelligence", featured by ultra high density, large-scale, dynamic heterogeneity, diversified functional requirements, and machine learning capabilities, which leads to a growing need for highly efficient intelligent algorithms. The classic optimization-based algorithms usually require highly precise mathematical model of data links and suffer from poor performance with high computational cost in realistic 6G applications. Based on domain knowledge (e.g., optimization models and theoretical tools), machine learning (ML) stands out as a promising and viable methodology for many complex large-scale optimization problems in 6G, due to its superior performance, computational efficiency, scalability, and generalizability. In this paper, we systematically review the most representative "learning to optimize" techniques in diverse domains of 6G wireless networks by identifying the inherent feature of the underlying optimization problem and investigating the specifically designed ML frameworks from the perspective of optimization. In particular, we will cover algorithm unrolling, learning to branch-and-bound, graph neural network for structured optimization, deep reinforcement learning for stochastic optimization, end-to-end learning for semantic optimization, as well as wireless federated learning for distributed optimization, which are capable of addressing challenging large-scale problems arising from a variety of crucial wireless applications. Through the in-depth discussion, we shed light on the excellent performance of ML-based optimization algorithms with respect to the classical methods, and provide insightful guidance to develop advanced ML techniques in 6G networks. Neural network design, theoretical tools of different ML methods, implementation issues, as well as challenges and future research directions are also discussed to support the practical use of the ML model in 6G wireless networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紧张的幻桃完成签到,获得积分10
刚刚
vincent发布了新的文献求助30
刚刚
善学以致用应助花花屯屯采纳,获得10
1秒前
科研通AI5应助许译匀采纳,获得10
2秒前
111发布了新的文献求助10
2秒前
嘿嘿嘿发布了新的文献求助10
2秒前
youjun完成签到,获得积分10
2秒前
2秒前
欢呼的未来完成签到 ,获得积分10
3秒前
陈某人完成签到,获得积分10
4秒前
科研通AI5应助Reedy采纳,获得10
4秒前
4秒前
5秒前
爆爆爆炸了完成签到 ,获得积分10
6秒前
7秒前
Ycc发布了新的文献求助10
7秒前
刘子健关注了科研通微信公众号
8秒前
TIAMO发布了新的文献求助10
8秒前
王大帅完成签到,获得积分10
9秒前
12秒前
脑洞疼应助fight采纳,获得10
12秒前
12秒前
13秒前
Dai发布了新的文献求助10
13秒前
科研通AI5应助坚定背包采纳,获得10
13秒前
123完成签到,获得积分20
13秒前
孟祥雷发布了新的文献求助10
13秒前
852应助davidwuran采纳,获得10
14秒前
14秒前
zwd发布了新的文献求助10
14秒前
星辰大海应助Guess采纳,获得10
14秒前
求学得识完成签到 ,获得积分10
15秒前
15秒前
尉迟衣发布了新的文献求助10
16秒前
舒萼完成签到,获得积分10
16秒前
16秒前
chunyeliangchuan完成签到,获得积分10
17秒前
吨吨应助张晴采纳,获得10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941008
求助须知:如何正确求助?哪些是违规求助? 4207071
关于积分的说明 13076503
捐赠科研通 3985864
什么是DOI,文献DOI怎么找? 2182332
邀请新用户注册赠送积分活动 1197889
关于科研通互助平台的介绍 1110237