亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning for Large-Scale Optimization in 6G Wireless Networks

计算机科学 人工智能 机器学习 比例(比率) 无线网络 无线 地理 地图学 电信
作者
Yandong Shi,Lixiang Lian,Yuanming Shi,Zixin Wang,Yong Zhou,Liqun Fu,Lin Bai,Jun Zhang,Wei Zhang
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (4): 2088-2132 被引量:51
标识
DOI:10.1109/comst.2023.3300664
摘要

The sixth generation (6G) wireless systems are envisioned to enable the paradigm shift from "connected things" to "connected intelligence", featured by ultra high density, large-scale, dynamic heterogeneity, diversified functional requirements, and machine learning capabilities, which leads to a growing need for highly efficient intelligent algorithms. The classic optimization-based algorithms usually require highly precise mathematical model of data links and suffer from poor performance with high computational cost in realistic 6G applications. Based on domain knowledge (e.g., optimization models and theoretical tools), machine learning (ML) stands out as a promising and viable methodology for many complex large-scale optimization problems in 6G, due to its superior performance, computational efficiency, scalability, and generalizability. In this paper, we systematically review the most representative "learning to optimize" techniques in diverse domains of 6G wireless networks by identifying the inherent feature of the underlying optimization problem and investigating the specifically designed ML frameworks from the perspective of optimization. In particular, we will cover algorithm unrolling, learning to branch-and-bound, graph neural network for structured optimization, deep reinforcement learning for stochastic optimization, end-to-end learning for semantic optimization, as well as wireless federated learning for distributed optimization, which are capable of addressing challenging large-scale problems arising from a variety of crucial wireless applications. Through the in-depth discussion, we shed light on the excellent performance of ML-based optimization algorithms with respect to the classical methods, and provide insightful guidance to develop advanced ML techniques in 6G networks. Neural network design, theoretical tools of different ML methods, implementation issues, as well as challenges and future research directions are also discussed to support the practical use of the ML model in 6G wireless networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
豆豆完成签到,获得积分10
11秒前
科研通AI2S应助满意的世界采纳,获得10
15秒前
CF完成签到 ,获得积分10
23秒前
Ava应助科研通管家采纳,获得10
26秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
英姑应助科研通管家采纳,获得10
26秒前
英姑应助科研通管家采纳,获得10
26秒前
27秒前
科目三应助科研通管家采纳,获得10
27秒前
27秒前
46秒前
shixueshashou完成签到,获得积分10
1分钟前
2分钟前
muhum完成签到 ,获得积分10
2分钟前
Sandy应助科研通管家采纳,获得20
2分钟前
大气建辉完成签到 ,获得积分10
2分钟前
真真完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
思源应助彼岸花开采纳,获得200
3分钟前
3分钟前
科研通AI5应助执着南琴采纳,获得10
3分钟前
4分钟前
执着南琴发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
彼岸花开发布了新的文献求助200
4分钟前
Xenogenesis发布了新的文献求助10
5分钟前
Xenogenesis完成签到,获得积分10
5分钟前
今后应助夕阳醉了采纳,获得10
5分钟前
郗妫完成签到,获得积分10
5分钟前
5分钟前
夕阳醉了发布了新的文献求助10
5分钟前
魔笛的云宝完成签到 ,获得积分10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155690
捐赠科研通 3245416
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216