Machine Learning for Large-Scale Optimization in 6G Wireless Networks

计算机科学 可扩展性 人工智能 机器学习 无线网络 随机优化 最优化问题 人工神经网络 无线 强化学习 分布式计算 数学优化 算法 电信 数学 数据库
作者
Yandong Shi,Lixiang Lian,Yuanming Shi,Zixin Wang,Yong Zhou,Liqun Fu,Lin Bai,Jun Zhang,Wei Zhang
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (4): 2088-2132 被引量:2
标识
DOI:10.1109/comst.2023.3300664
摘要

The sixth generation (6G) wireless systems are envisioned to enable the paradigm shift from “connected things” to “connected intelligence”, featured by ultra high density, large-scale, dynamic heterogeneity, diversified functional requirements, and machine learning capabilities, which leads to a growing need for highly efficient intelligent algorithms. The classic optimization-based algorithms usually require highly precise mathematical model of data links and suffer from poor performance with high computational cost in realistic 6G applications. Based on domain knowledge (e.g., optimization models and theoretical tools), machine learning (ML) stands out as a promising and viable methodology for many complex large-scale optimization problems in 6G, due to its superior performance, computational efficiency, scalability, and generalizability. In this paper, we systematically review the most representative “learning to optimize" techniques in diverse domains of 6G wireless networks by identifying the inherent feature of the underlying optimization problem and investigating the specifically designed ML frameworks from the perspective of optimization. In particular, we will cover algorithm unrolling, learning to branch-and-bound, graph neural network for structured optimization, deep reinforcement learning for stochastic optimization, end-to-end learning for semantic optimization, as well as wireless federated learning for distributed optimization, which are capable of addressing challenging large-scale problems arising from a variety of crucial wireless applications. Through the in-depth discussion, we shed light on the excellent performance of ML-based optimization algorithms with respect to the classical methods, and provide insightful guidance to develop advanced ML techniques in 6G networks. Neural network design, theoretical tools of different ML methods, implementation issues, as well as challenges and future research directions are also discussed to support the practical use of the ML model in 6G wireless networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qianmo发布了新的文献求助10
1秒前
Ava应助虚幻的南蕾采纳,获得10
1秒前
1秒前
2秒前
诚心沛珊完成签到,获得积分20
3秒前
4秒前
田様应助fbbggb采纳,获得10
4秒前
5秒前
5秒前
6秒前
诚心沛珊发布了新的文献求助10
7秒前
四眼骷髅发布了新的文献求助10
8秒前
8秒前
8秒前
背后发卡完成签到,获得积分10
8秒前
9秒前
哈哈发布了新的文献求助10
10秒前
刘晓倩发布了新的文献求助10
10秒前
cc完成签到,获得积分10
10秒前
applepie完成签到,获得积分10
11秒前
hdd完成签到,获得积分10
11秒前
在水一方应助丁爽采纳,获得30
12秒前
wanci应助科研通管家采纳,获得10
12秒前
yun发布了新的文献求助10
12秒前
qin希望应助科研通管家采纳,获得30
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
12秒前
小二郎应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046