亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning for Large-Scale Optimization in 6G Wireless Networks

计算机科学 人工智能 机器学习 比例(比率) 无线网络 无线 地理 地图学 电信
作者
Yandong Shi,Lixiang Lian,Yuanming Shi,Zixin Wang,Yong Zhou,Liqun Fu,Lin Bai,Jun Zhang,Wei Zhang
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (4): 2088-2132 被引量:51
标识
DOI:10.1109/comst.2023.3300664
摘要

The sixth generation (6G) wireless systems are envisioned to enable the paradigm shift from "connected things" to "connected intelligence", featured by ultra high density, large-scale, dynamic heterogeneity, diversified functional requirements, and machine learning capabilities, which leads to a growing need for highly efficient intelligent algorithms. The classic optimization-based algorithms usually require highly precise mathematical model of data links and suffer from poor performance with high computational cost in realistic 6G applications. Based on domain knowledge (e.g., optimization models and theoretical tools), machine learning (ML) stands out as a promising and viable methodology for many complex large-scale optimization problems in 6G, due to its superior performance, computational efficiency, scalability, and generalizability. In this paper, we systematically review the most representative "learning to optimize" techniques in diverse domains of 6G wireless networks by identifying the inherent feature of the underlying optimization problem and investigating the specifically designed ML frameworks from the perspective of optimization. In particular, we will cover algorithm unrolling, learning to branch-and-bound, graph neural network for structured optimization, deep reinforcement learning for stochastic optimization, end-to-end learning for semantic optimization, as well as wireless federated learning for distributed optimization, which are capable of addressing challenging large-scale problems arising from a variety of crucial wireless applications. Through the in-depth discussion, we shed light on the excellent performance of ML-based optimization algorithms with respect to the classical methods, and provide insightful guidance to develop advanced ML techniques in 6G networks. Neural network design, theoretical tools of different ML methods, implementation issues, as well as challenges and future research directions are also discussed to support the practical use of the ML model in 6G wireless networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
陈宇发布了新的文献求助10
8秒前
orixero应助陈宇采纳,获得10
21秒前
陈宇完成签到,获得积分10
32秒前
duan完成签到 ,获得积分10
38秒前
点点完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
2分钟前
3分钟前
杜鑫鹏发布了新的文献求助10
3分钟前
饼干完成签到 ,获得积分10
3分钟前
lin发布了新的文献求助10
3分钟前
飞天大南瓜完成签到,获得积分10
3分钟前
负责以山完成签到 ,获得积分10
4分钟前
震动的忆雪完成签到 ,获得积分10
4分钟前
5分钟前
LHC发布了新的文献求助10
5分钟前
lin发布了新的文献求助10
6分钟前
lin完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得30
7分钟前
7分钟前
yyw发布了新的文献求助10
7分钟前
冷傲迎梅完成签到 ,获得积分10
7分钟前
Antares发布了新的文献求助10
7分钟前
8分钟前
科研通AI6应助Antares采纳,获得10
8分钟前
紫熊完成签到,获得积分10
8分钟前
Criminology34应助科研通管家采纳,获得10
9分钟前
WebCasa完成签到,获得积分10
9分钟前
11分钟前
Criminology34应助科研通管家采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
Yini应助科研通管家采纳,获得150
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
Yini应助科研通管家采纳,获得150
11分钟前
云缘墨色完成签到 ,获得积分10
11分钟前
11分钟前
lingyun4592发布了新的文献求助10
11分钟前
云墨完成签到 ,获得积分10
11分钟前
lingyun4592完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357299
求助须知:如何正确求助?哪些是违规求助? 4488724
关于积分的说明 13972484
捐赠科研通 4389934
什么是DOI,文献DOI怎么找? 2411763
邀请新用户注册赠送积分活动 1404357
关于科研通互助平台的介绍 1378587