Machine Learning for Large-Scale Optimization in 6G Wireless Networks

计算机科学 人工智能 机器学习 比例(比率) 无线网络 无线 地理 地图学 电信
作者
Yandong Shi,Lixiang Lian,Yuanming Shi,Zixin Wang,Yong Zhou,Liqun Fu,Lin Bai,Jun Zhang,Wei Zhang
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (4): 2088-2132 被引量:51
标识
DOI:10.1109/comst.2023.3300664
摘要

The sixth generation (6G) wireless systems are envisioned to enable the paradigm shift from "connected things" to "connected intelligence", featured by ultra high density, large-scale, dynamic heterogeneity, diversified functional requirements, and machine learning capabilities, which leads to a growing need for highly efficient intelligent algorithms. The classic optimization-based algorithms usually require highly precise mathematical model of data links and suffer from poor performance with high computational cost in realistic 6G applications. Based on domain knowledge (e.g., optimization models and theoretical tools), machine learning (ML) stands out as a promising and viable methodology for many complex large-scale optimization problems in 6G, due to its superior performance, computational efficiency, scalability, and generalizability. In this paper, we systematically review the most representative "learning to optimize" techniques in diverse domains of 6G wireless networks by identifying the inherent feature of the underlying optimization problem and investigating the specifically designed ML frameworks from the perspective of optimization. In particular, we will cover algorithm unrolling, learning to branch-and-bound, graph neural network for structured optimization, deep reinforcement learning for stochastic optimization, end-to-end learning for semantic optimization, as well as wireless federated learning for distributed optimization, which are capable of addressing challenging large-scale problems arising from a variety of crucial wireless applications. Through the in-depth discussion, we shed light on the excellent performance of ML-based optimization algorithms with respect to the classical methods, and provide insightful guidance to develop advanced ML techniques in 6G networks. Neural network design, theoretical tools of different ML methods, implementation issues, as well as challenges and future research directions are also discussed to support the practical use of the ML model in 6G wireless networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gu发布了新的文献求助10
1秒前
吸尘器完成签到 ,获得积分10
1秒前
慕言完成签到 ,获得积分10
4秒前
耍酷的冷雪完成签到,获得积分10
4秒前
做不了一点科研完成签到 ,获得积分10
5秒前
wgl200212完成签到,获得积分10
6秒前
温暖霸完成签到,获得积分10
6秒前
四糸乃完成签到,获得积分10
6秒前
St雪完成签到,获得积分10
6秒前
菜头完成签到,获得积分10
9秒前
万里完成签到,获得积分10
10秒前
15940203654完成签到 ,获得积分10
10秒前
orange应助医无止境采纳,获得10
11秒前
xixi很困完成签到 ,获得积分10
11秒前
犹豫的若男完成签到,获得积分10
13秒前
鸡蛋完成签到 ,获得积分10
13秒前
hsiuf完成签到,获得积分10
15秒前
Gu完成签到,获得积分10
15秒前
闻巷雨完成签到 ,获得积分10
16秒前
一八四完成签到,获得积分10
18秒前
大琪哥哥要顺利毕业完成签到 ,获得积分10
18秒前
顾矜应助DR.zhang采纳,获得10
19秒前
疯子不风完成签到,获得积分10
19秒前
mm完成签到 ,获得积分10
20秒前
KingHok完成签到,获得积分10
21秒前
ccx完成签到,获得积分10
22秒前
执着新蕾完成签到,获得积分10
22秒前
pppra完成签到,获得积分10
23秒前
lihaichuan完成签到,获得积分10
23秒前
笑点低的凉面完成签到,获得积分10
24秒前
活力数据线完成签到,获得积分10
25秒前
26秒前
poly完成签到,获得积分10
26秒前
典雅三颜完成签到 ,获得积分10
27秒前
聂先生完成签到,获得积分10
30秒前
菘蓝应助科研通管家采纳,获得10
31秒前
fei菲飞完成签到,获得积分10
31秒前
风清扬应助科研通管家采纳,获得150
31秒前
蛇從革应助科研通管家采纳,获得150
31秒前
馆长应助科研通管家采纳,获得30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188343
求助须知:如何正确求助?哪些是违规求助? 4372620
关于积分的说明 13613734
捐赠科研通 4225939
什么是DOI,文献DOI怎么找? 2318042
邀请新用户注册赠送积分活动 1316607
关于科研通互助平台的介绍 1266283