CNN‐Based Neurodegenerative Disease Classification Using QR‐Represented Gait Data

肌萎缩侧索硬化 步态 帕金森病 疾病 亨廷顿病 卷积神经网络 医学 物理医学与康复 人工智能 计算机科学 病理
作者
Çağatay Berke Erdaş,Emre Sümer
出处
期刊:Brain and behavior [Wiley]
卷期号:14 (10) 被引量:1
标识
DOI:10.1002/brb3.70100
摘要

ABSTRACT Purpose The primary aim of this study is to develop an effective and reliable diagnostic system for neurodegenerative diseases by utilizing gait data transformed into QR codes and classified using convolutional neural networks (CNNs). The objective of this method is to enhance the precision of diagnosing neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Huntington's disease (HD), through the introduction of a novel approach to analyze gait patterns. Methods The research evaluates the CNN‐based classification approach using QR‐represented gait data to address the diagnostic challenges associated with neurodegenerative diseases. The gait data of subjects were converted into QR codes, which were then classified using a CNN deep learning model. The dataset includes recordings from patients with Parkinson's disease ( n = 15), Huntington's disease ( n = 20), and amyotrophic lateral sclerosis ( n = 13), and from 16 healthy controls. Results The accuracy rates obtained through 10‐fold cross‐validation were as follows: 94.86% for NDD versus control, 95.81% for PD versus control, 93.56% for HD versus control, 97.65% for ALS versus control, and 84.65% for PD versus HD versus ALS versus control. These results demonstrate the potential of the proposed system in distinguishing between different neurodegenerative diseases and control groups. Conclusion The results indicate that the designed system may serve as a complementary tool for the diagnosis of neurodegenerative diseases, particularly in individuals who already present with varying degrees of motor impairment. Further validation and research are needed to establish its wider applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ytli完成签到,获得积分10
2秒前
华仔应助足下采纳,获得10
4秒前
张童鞋完成签到 ,获得积分10
4秒前
ytli发布了新的文献求助50
7秒前
自由可乐完成签到,获得积分0
12秒前
14秒前
郦稀完成签到 ,获得积分10
16秒前
互帮互助完成签到,获得积分10
17秒前
足下发布了新的文献求助10
18秒前
ccl完成签到,获得积分10
23秒前
23秒前
科研的牲口完成签到,获得积分10
24秒前
无限的水壶完成签到 ,获得积分10
24秒前
solar@2030完成签到,获得积分10
25秒前
27秒前
Parotodus完成签到 ,获得积分10
28秒前
大气的乌冬面完成签到,获得积分10
28秒前
RLLLLLLL完成签到 ,获得积分10
28秒前
31秒前
Chalo完成签到,获得积分10
32秒前
嗯哼应助ccl采纳,获得20
35秒前
徐茂瑜完成签到 ,获得积分10
38秒前
爱吃萝卜的鱼完成签到,获得积分10
40秒前
zd发布了新的文献求助10
44秒前
lcxszsd完成签到 ,获得积分10
47秒前
你过来啊完成签到 ,获得积分10
47秒前
英姑应助现代初珍采纳,获得10
50秒前
蕾蕾发布了新的文献求助10
51秒前
旧梦如烟完成签到,获得积分10
51秒前
Leroy发布了新的文献求助50
52秒前
52秒前
52秒前
53秒前
53秒前
旧梦如烟发布了新的文献求助10
56秒前
朱小小完成签到,获得积分10
58秒前
weiyongswust发布了新的文献求助10
58秒前
59秒前
ok发布了新的文献求助10
1分钟前
YXH发布了新的文献求助10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289351
求助须知:如何正确求助?哪些是违规求助? 2926377
关于积分的说明 8426851
捐赠科研通 2597551
什么是DOI,文献DOI怎么找? 1417208
科研通“疑难数据库(出版商)”最低求助积分说明 659637
邀请新用户注册赠送积分活动 642117