CNN‐Based Neurodegenerative Disease Classification Using QR‐Represented Gait Data

肌萎缩侧索硬化 步态 帕金森病 疾病 亨廷顿病 卷积神经网络 医学 物理医学与康复 人工智能 计算机科学 病理
作者
Çağatay Berke Erdaş,Emre Sümer
出处
期刊:Brain and behavior [Wiley]
卷期号:14 (10) 被引量:1
标识
DOI:10.1002/brb3.70100
摘要

ABSTRACT Purpose The primary aim of this study is to develop an effective and reliable diagnostic system for neurodegenerative diseases by utilizing gait data transformed into QR codes and classified using convolutional neural networks (CNNs). The objective of this method is to enhance the precision of diagnosing neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Huntington's disease (HD), through the introduction of a novel approach to analyze gait patterns. Methods The research evaluates the CNN‐based classification approach using QR‐represented gait data to address the diagnostic challenges associated with neurodegenerative diseases. The gait data of subjects were converted into QR codes, which were then classified using a CNN deep learning model. The dataset includes recordings from patients with Parkinson's disease ( n = 15), Huntington's disease ( n = 20), and amyotrophic lateral sclerosis ( n = 13), and from 16 healthy controls. Results The accuracy rates obtained through 10‐fold cross‐validation were as follows: 94.86% for NDD versus control, 95.81% for PD versus control, 93.56% for HD versus control, 97.65% for ALS versus control, and 84.65% for PD versus HD versus ALS versus control. These results demonstrate the potential of the proposed system in distinguishing between different neurodegenerative diseases and control groups. Conclusion The results indicate that the designed system may serve as a complementary tool for the diagnosis of neurodegenerative diseases, particularly in individuals who already present with varying degrees of motor impairment. Further validation and research are needed to establish its wider applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚雨兰完成签到,获得积分10
1秒前
蒙蒙发布了新的文献求助10
1秒前
慕青应助sunwei采纳,获得10
1秒前
CharlieYue完成签到,获得积分10
2秒前
张琨完成签到 ,获得积分10
4秒前
潘涵完成签到,获得积分10
5秒前
yuan完成签到,获得积分10
6秒前
无名完成签到,获得积分10
6秒前
7秒前
i羽翼深蓝i完成签到,获得积分10
7秒前
煮饭忘加米完成签到,获得积分10
7秒前
薛小飞飞完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
闾丘博完成签到,获得积分10
11秒前
11秒前
11秒前
arniu2008发布了新的文献求助10
12秒前
科研通AI6应助蒙蒙采纳,获得10
12秒前
无极微光应助pp采纳,获得20
12秒前
wxp5294完成签到,获得积分10
15秒前
能干水蓝发布了新的文献求助10
15秒前
sunwei发布了新的文献求助10
16秒前
18秒前
zyyyyyu完成签到,获得积分10
18秒前
jianglili完成签到,获得积分10
19秒前
絮絮徐完成签到 ,获得积分10
21秒前
tingalan完成签到,获得积分0
21秒前
wang完成签到,获得积分10
21秒前
大个应助arniu2008采纳,获得10
21秒前
迷人的小土豆完成签到,获得积分10
22秒前
多肉丸子完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
11112321321完成签到 ,获得积分10
24秒前
Weilu完成签到 ,获得积分10
25秒前
sunwei完成签到,获得积分10
25秒前
26秒前
双shuang完成签到,获得积分10
26秒前
能干水蓝完成签到,获得积分10
27秒前
康轲完成签到,获得积分0
28秒前
怕触电的电源完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651555
求助须知:如何正确求助?哪些是违规求助? 4785100
关于积分的说明 15054111
捐赠科研通 4810151
什么是DOI,文献DOI怎么找? 2572990
邀请新用户注册赠送积分活动 1528919
关于科研通互助平台的介绍 1487917