CNN‐Based Neurodegenerative Disease Classification Using QR‐Represented Gait Data

肌萎缩侧索硬化 步态 帕金森病 疾病 亨廷顿病 卷积神经网络 医学 物理医学与康复 人工智能 计算机科学 病理
作者
Çağatay Berke Erdaş,Emre Sümer
出处
期刊:Brain and behavior [Wiley]
卷期号:14 (10) 被引量:1
标识
DOI:10.1002/brb3.70100
摘要

ABSTRACT Purpose The primary aim of this study is to develop an effective and reliable diagnostic system for neurodegenerative diseases by utilizing gait data transformed into QR codes and classified using convolutional neural networks (CNNs). The objective of this method is to enhance the precision of diagnosing neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Huntington's disease (HD), through the introduction of a novel approach to analyze gait patterns. Methods The research evaluates the CNN‐based classification approach using QR‐represented gait data to address the diagnostic challenges associated with neurodegenerative diseases. The gait data of subjects were converted into QR codes, which were then classified using a CNN deep learning model. The dataset includes recordings from patients with Parkinson's disease ( n = 15), Huntington's disease ( n = 20), and amyotrophic lateral sclerosis ( n = 13), and from 16 healthy controls. Results The accuracy rates obtained through 10‐fold cross‐validation were as follows: 94.86% for NDD versus control, 95.81% for PD versus control, 93.56% for HD versus control, 97.65% for ALS versus control, and 84.65% for PD versus HD versus ALS versus control. These results demonstrate the potential of the proposed system in distinguishing between different neurodegenerative diseases and control groups. Conclusion The results indicate that the designed system may serve as a complementary tool for the diagnosis of neurodegenerative diseases, particularly in individuals who already present with varying degrees of motor impairment. Further validation and research are needed to establish its wider applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hh完成签到,获得积分10
刚刚
壮观缘分完成签到,获得积分10
1秒前
科研通AI5应助小小怪采纳,获得10
4秒前
011_wasd发布了新的文献求助10
5秒前
Yange发布了新的文献求助20
5秒前
刁刁完成签到,获得积分20
6秒前
7秒前
8秒前
无奈的如柏完成签到,获得积分20
8秒前
jjx1005完成签到 ,获得积分10
9秒前
只要平凡发布了新的文献求助10
9秒前
10秒前
刁刁发布了新的文献求助10
11秒前
飞上天的皮蛋完成签到,获得积分10
13秒前
zho应助WDWK采纳,获得10
16秒前
16秒前
稳重的悟空完成签到 ,获得积分10
18秒前
jiangxiaoyu完成签到 ,获得积分10
20秒前
骅骝发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
鬼小妞nice完成签到 ,获得积分10
24秒前
受伤芝麻完成签到,获得积分10
25秒前
任性迎南发布了新的文献求助10
27秒前
王青文完成签到,获得积分10
27秒前
受伤芝麻发布了新的文献求助10
27秒前
天边发布了新的文献求助10
29秒前
31秒前
33秒前
科研通AI5应助六七十三采纳,获得10
33秒前
35秒前
35秒前
席红旗发布了新的文献求助10
36秒前
丘比特应助天边采纳,获得10
37秒前
37秒前
梦梦的小可爱完成签到 ,获得积分10
37秒前
StrawCc完成签到,获得积分10
37秒前
科研通AI2S应助糊涂的板凳采纳,获得10
38秒前
李健应助科研通管家采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712