Fault identification of rolling bearing based on improved salp swarm algorithm

方位(导航) 鉴定(生物学) 群体行为 断层(地质) 算法 计算机科学 人工智能 工程类 地质学 地震学 植物 生物
作者
Hongwei Chen,Man Zhang,Fangrui Liu,Zexi Chen
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-26
标识
DOI:10.3233/ida-230994
摘要

Due to the rapid development of industrial manufacturing technology, modern mechanical equipment involves complex operating conditions and structural characteristics of hardware systems. Therefore, the state of components directly affects the stable operation of mechanical parts. To ensure engineering reliability improvement and economic benefits, bearing diagnosis has always been a concern in the field of mechanical engineering. Therefore, this article studies an effective machine learning method to extract useful fault feature information from actual bearing vibration signals and identify bearing faults. Firstly, variational mode decomposition decomposes the source signal into several intrinsic mode functions according to the actual situation. The vibration signal of the bearing is decomposed and reconstructed. By iteratively solving the variational model, the optimal modulus function can be obtained, which can better describe the characteristics of the original signal. Then, the feature subset is efficiently searched using the wrapper method of feature selection and the improved binary salp swarm algorithm (IBSSA) to effectively reduce redundant feature vectors, thereby accurately extracting fault feature frequency signals. Finally, support vector machines are used to classify and identify fault types, and the advantages of support vector machines are verified through extensive experiments, improving the ability of global search potential solutions. The experimental findings demonstrate the superior fault recognition performance of the IBSSA algorithm, with a highest recognition accuracy of 97.5%. By comparing different recognition methods, it is concluded that this method can accurately identify bearing failure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助岩下松风采纳,获得10
刚刚
某某人发布了新的文献求助10
刚刚
1秒前
打打应助包子采纳,获得10
1秒前
乐观的莆发布了新的文献求助10
1秒前
早川发布了新的文献求助10
1秒前
mc发布了新的文献求助10
1秒前
传奇3应助科研鸭采纳,获得10
1秒前
Jason应助材1采纳,获得20
2秒前
2秒前
赘婿应助castro采纳,获得10
2秒前
2秒前
2秒前
2秒前
yKkkkkk完成签到,获得积分10
2秒前
dreamboat完成签到,获得积分10
3秒前
方寸应助kele采纳,获得10
3秒前
3秒前
星辰大海应助yang采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
小清新完成签到,获得积分10
4秒前
思源应助科研通管家采纳,获得30
4秒前
南风应助科研通管家采纳,获得10
4秒前
鼠鼠应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
meo应助科研通管家采纳,获得10
5秒前
南风应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
机智的雪糕完成签到,获得积分10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
lulupoo发布了新的文献求助10
5秒前
烟花应助科研通管家采纳,获得30
5秒前
Hello应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得30
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524332
求助须知:如何正确求助?哪些是违规求助? 3105310
关于积分的说明 9273367
捐赠科研通 2802283
什么是DOI,文献DOI怎么找? 1538041
邀请新用户注册赠送积分活动 715923
科研通“疑难数据库(出版商)”最低求助积分说明 709093