已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Review of Cluster Filtering Methods for Point-Cloud-Based Rockfall Monitoring

落石 点云 计算机科学 星团(航天器) 云计算 遥感 计算机视觉 地质学 计算机网络 操作系统 岩土工程 山崩
作者
Erik D. Emmons,Gabriel Walton
标识
DOI:10.56952/arma-2024-0580
摘要

ABSTRACT: The standard methodology for through-time rockfall analysis from slope point clouds consists of computing changes between lidar scans, followed by grouping areas of significant change using unsupervised clustering (e.g., DBSCAN). Clusters found are indicative of a potential rockfall and can be used for the construction of a comprehensive rockfall database. However, clustered change not representing true rockfalls is common, often accounting for the majority of identified objects. Identifying these erroneous clusters requires hours of manual verification; therefore, the search for an effective filtering method to reduce the need for manual verification is a highly relevant topic in the field of point-cloud-based slope monitoring research. This paper presents a review of recent literature on the filtering of rockfall databases to remove erroneous clusters and maintain an overall high quality rockfall database. The review has highlighted the lack of standards for filtering these clusters and a corresponding high degree of variability in filtering methods. 1. BACKGROUND The risk of rockfall from slopes along transportation corridors can be characterized by both the magnitude (volume) and frequency of block detachments. Rockfall inventories are commonly used to define a magnitude-frequency curve for a given slope of interest. Using a power-law fit to such a curve, the frequency of certain sized rockfall events can be estimated (Dussauge et al., 2003; Dussauge-Peisser et al., 2002; Hungr et al., 1999). Using terrestrial laser scanning (TLS), high-resolution point cloud data is now available for regularly monitored slopes, allowing comprehensive rockfall databases to be created. To characterize these slopes, the construction of rockfall databases typically follows a standard methodology (Abellán et al., 2010; Brodu & Lague, 2012; Schovanec et al., 2021; Tonini & Abellan, 2014; Weidner et al., 2019): (i). Collection of multiple epochs of TLS. (ii). Alignment of collected point clouds. (iii). Calculation of change between subsequent scans to determine areas of apparent volume loss. (iv). Clustering detected areas of change using a clustering algorithm (commonly Density Based Spatial Clustering of Applications with Noise – DBSCAN) (Ester et al., 1996). (v). Classification and filtering of detected clusters, for example to discern rockfall clusters from non-rockfall clusters (vegetation, shadows, occlusion, snowfall, etc.). Through the application of this methodology, a rockfall database can be created for a monitored slope. While the application of either manual or automated cluster filtering (step "v") can be critical to avoid inclusion of erroneous clusters in a rockfall database, the acceptance of all clusters (i.e. no filtering) is a common approach in practice (see Table 1 for a summary of approaches adopted in the literature). This paper presents a review of the current approaches and challenges associated with rockfall cluster filtering, as well as its practical importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
念安发布了新的文献求助10
3秒前
吡咯爱成环完成签到,获得积分0
3秒前
3秒前
研友_Z6W9B8发布了新的文献求助20
4秒前
5秒前
5秒前
8秒前
沈万熙发布了新的文献求助10
9秒前
SS发布了新的文献求助10
9秒前
猪猪hero应助科研通管家采纳,获得30
10秒前
猪猪hero应助科研通管家采纳,获得10
10秒前
猪猪hero应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
FIN应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
pywangsmmu92完成签到,获得积分10
11秒前
桐桐应助念安采纳,获得10
14秒前
15秒前
15秒前
17秒前
靖柔发布了新的文献求助10
20秒前
22秒前
恶魔强发布了新的文献求助10
22秒前
曾经曼梅发布了新的文献求助10
22秒前
123zyx完成签到 ,获得积分10
25秒前
李健应助xzx采纳,获得10
26秒前
zxq1996完成签到 ,获得积分10
28秒前
Good_小鬼完成签到,获得积分10
30秒前
31秒前
绝不熬夜完成签到,获得积分10
32秒前
扶摇完成签到 ,获得积分10
33秒前
33秒前
33秒前
mc发布了新的文献求助10
36秒前
英俊的铭应助王小嘻采纳,获得10
36秒前
天天快乐应助小河向东流采纳,获得10
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510727
关于积分的说明 11154880
捐赠科研通 3245180
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168