MFHARFNet: Multi-branch feature hybrid and adaptive receptive field network for image segmentation

特征(语言学) 计算机科学 分割 人工智能 图像(数学) 模式识别(心理学) 感受野 计算机视觉 领域(数学) 图像分割 数学 哲学 语言学 纯数学
作者
Meng Li,Juntong Yun,Jiang Du,Bo Tao,Rong Liu,Gongfa Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015704-015704
标识
DOI:10.1088/1361-6501/ad876d
摘要

Abstract Accurate segmentation of medical images is crucial for disease diagnosis and understanding disease changes. Deep learning methods, utilizing encoder-decoder structures, have demonstrated cutting-edge performance in various medical image segmentation tasks. However, the pooling operation in the encoding stage results in feature loss, which makes the network lack the ability to fuse multi-scale information at different levels, hinders its effective perception of multi-scale information, and leads to poor segmentation performance. Drawing inspiration from the U-shaped network, this study introduces a multi-branch feature hybrid attention and adaptive receptive field network (MFHARFNet) for medical image segmentation. Building upon the encoder-decoder framework, we initially devise a multi-branch feature hybrid attention module (MFHAM) to seamlessly integrate feature maps of varying scales, capturing both fine-grained features and coarse-grained semantics across the entire scale. Furthermore, we redesign the skip connection to amalgamate feature information from different branches in the encoder stage and efficiently transmit it to the decoder, providing the decoder with global context feature maps at different levels. Finally, the adaptive receptive field (ARF) module is introduced in the decoder feature reconstruction stage to adapt and focus on related fields, ensuring the model’s adaptation to different segmentation target features, and achieving different weights for the output of different convolution kernels to improve segmentation performance. We comprehensively evaluate our method on medical image segmentation tasks, by using four public datasets across CT and MRI. Remarkably, MFHARFNet method consistently outperforms other state-of-the-art methods, exceeding UNet by 2.1%, 0.9%, 6.6% and 1.0% on Dice on ATLAS, LiTs, BraTs2019 and Spine and intervertebral disc datasets, respectively. In addition, MFHARFNet minimizes network parameters and computational complexity as much as possible. The source codes are in https://github.com/OneHundred99/MFHARFNet .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无情的剑心完成签到,获得积分10
1秒前
研友_VZG7GZ应助zwenng采纳,获得10
2秒前
Cong完成签到,获得积分10
2秒前
Ammon发布了新的文献求助10
2秒前
bzc完成签到,获得积分10
2秒前
花生了什么树完成签到,获得积分10
2秒前
阿巴阿巴完成签到,获得积分10
2秒前
自觉的小凝完成签到,获得积分20
3秒前
Sunny发布了新的文献求助10
3秒前
科研通AI5应助Stitch采纳,获得10
3秒前
陆露完成签到,获得积分10
4秒前
lvyan完成签到,获得积分10
4秒前
Wacky发布了新的文献求助10
4秒前
LXx完成签到 ,获得积分10
5秒前
宣以晴完成签到,获得积分10
5秒前
Jingshuiliushen完成签到,获得积分10
6秒前
6秒前
6秒前
哈哈发布了新的文献求助10
6秒前
剑兰先生完成签到,获得积分10
6秒前
H_bing完成签到,获得积分10
7秒前
科研通AI2S应助魔幻的雁采纳,获得10
7秒前
Unshouable完成签到,获得积分10
7秒前
DX发布了新的文献求助40
7秒前
浮生完成签到 ,获得积分10
8秒前
深情安青应助慧敏采纳,获得10
8秒前
CipherSage应助ZYL采纳,获得10
8秒前
naomic发布了新的文献求助10
8秒前
快快毕业完成签到 ,获得积分10
9秒前
9秒前
123完成签到,获得积分10
9秒前
怡然念之完成签到 ,获得积分10
9秒前
miaoww完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
yuuzy发布了新的文献求助10
11秒前
11秒前
独特凌柏完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539347
求助须知:如何正确求助?哪些是违规求助? 3116960
关于积分的说明 9328009
捐赠科研通 2814751
什么是DOI,文献DOI怎么找? 1547140
邀请新用户注册赠送积分活动 720813
科研通“疑难数据库(出版商)”最低求助积分说明 712247