Advances in rock physics for pore pressure prediction: A comprehensive review and future directions

杠杆(统计) 地球物理学 计算机科学 领域(数学) 预测建模 机器学习 地质学 人工智能 数据科学 数学 纯数学
作者
Adindu Donatus Ogbu,Kate A. Iwe,Williams Ozowe,Augusta Heavens Ikevuje
出处
期刊:Engineering science & tecnology journal [Fair East Publishers]
卷期号:5 (7): 2304-2322 被引量:4
标识
DOI:10.51594/estj.v5i7.1345
摘要

Advances in rock physics have significantly enhanced pore pressure prediction, a critical aspect of subsurface exploration and drilling operations. This comprehensive review delves into the latest developments in rock physics methodologies, integrating empirical, theoretical, and computational approaches to predict pore pressure more accurately. Traditional pore pressure prediction methods often rely on well log data and seismic attributes, but recent advancements have introduced innovative techniques that leverage the physical properties of rocks to provide more reliable predictions. Key advances include the development of improved rock physics models that better account for the complexities of subsurface environments, such as heterogeneity and anisotropy. These models integrate data from various sources, including well logs, core samples, and seismic surveys, to create a more comprehensive understanding of the subsurface. Additionally, the application of machine learning and artificial intelligence to rock physics has opened new avenues for analyzing large datasets, identifying patterns, and refining predictive models. This review also examines the role of laboratory experiments and field studies in validating and calibrating rock physics models. High-pressure and high-temperature experiments have provided valuable insights into the behavior of rocks under different conditions, which are essential for accurate pore pressure prediction. Field studies, on the other hand, offer real-world data that help in fine-tuning models and methodologies. Future directions in rock physics for pore pressure prediction include the integration of advanced geophysical techniques, such as full-waveform inversion and distributed acoustic sensing, which offer higher resolution data and more detailed subsurface imaging. The use of cloud computing and high-performance computing platforms is also expected to enhance the processing and analysis of large datasets, making predictive models more efficient and scalable. The comprehensive review concludes by highlighting the importance of interdisciplinary collaboration in advancing rock physics methodologies. By combining expertise from geophysics, petrophysics, geomechanics, and data science, the field can continue to innovate and improve the accuracy and reliability of pore pressure predictions, ultimately enhancing exploration and production efficiency in the oil and gas industry. Keywords: Advances, Rock Physics, Pore Pressure, Prediction, Future Directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
yar应助科研通管家采纳,获得10
刚刚
刚刚
ZQY发布了新的文献求助10
刚刚
小圆子完成签到,获得积分10
刚刚
魁梧的一笑完成签到,获得积分20
刚刚
浮游应助迷人的叫兽采纳,获得10
1秒前
美女完成签到,获得积分10
1秒前
曹先生完成签到,获得积分10
1秒前
fsz发布了新的文献求助10
1秒前
Forever完成签到 ,获得积分10
1秒前
成就的沛菡完成签到 ,获得积分10
1秒前
海藻发布了新的文献求助10
2秒前
科研通AI2S应助michael采纳,获得10
2秒前
糖脎发布了新的文献求助10
2秒前
啊大大哇完成签到,获得积分10
2秒前
aliu完成签到,获得积分10
3秒前
还没想好完成签到,获得积分10
3秒前
yanjiuhuzu完成签到,获得积分10
4秒前
朵拉A梦完成签到,获得积分10
4秒前
coffeecoffee完成签到,获得积分10
5秒前
太兰完成签到 ,获得积分10
5秒前
jopaul完成签到,获得积分10
5秒前
orixero应助酷炫柔采纳,获得10
5秒前
懵懂的明辉完成签到,获得积分10
5秒前
思源应助世界随心走采纳,获得10
6秒前
Zengyuan完成签到,获得积分10
6秒前
gaozengxiang完成签到,获得积分10
7秒前
8秒前
超级大肥宅完成签到,获得积分10
8秒前
8秒前
ChemistryZyh完成签到,获得积分10
9秒前
Crush完成签到,获得积分10
9秒前
零知识完成签到 ,获得积分10
9秒前
高乐高完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451