Advances in rock physics for pore pressure prediction: A comprehensive review and future directions

杠杆(统计) 地球物理学 计算机科学 领域(数学) 预测建模 机器学习 地质学 人工智能 数据科学 数学 纯数学
作者
Adindu Donatus Ogbu,Kate A. Iwe,Williams Ozowe,Augusta Heavens Ikevuje
出处
期刊:Engineering science & tecnology journal [Fair East Publishers]
卷期号:5 (7): 2304-2322 被引量:4
标识
DOI:10.51594/estj.v5i7.1345
摘要

Advances in rock physics have significantly enhanced pore pressure prediction, a critical aspect of subsurface exploration and drilling operations. This comprehensive review delves into the latest developments in rock physics methodologies, integrating empirical, theoretical, and computational approaches to predict pore pressure more accurately. Traditional pore pressure prediction methods often rely on well log data and seismic attributes, but recent advancements have introduced innovative techniques that leverage the physical properties of rocks to provide more reliable predictions. Key advances include the development of improved rock physics models that better account for the complexities of subsurface environments, such as heterogeneity and anisotropy. These models integrate data from various sources, including well logs, core samples, and seismic surveys, to create a more comprehensive understanding of the subsurface. Additionally, the application of machine learning and artificial intelligence to rock physics has opened new avenues for analyzing large datasets, identifying patterns, and refining predictive models. This review also examines the role of laboratory experiments and field studies in validating and calibrating rock physics models. High-pressure and high-temperature experiments have provided valuable insights into the behavior of rocks under different conditions, which are essential for accurate pore pressure prediction. Field studies, on the other hand, offer real-world data that help in fine-tuning models and methodologies. Future directions in rock physics for pore pressure prediction include the integration of advanced geophysical techniques, such as full-waveform inversion and distributed acoustic sensing, which offer higher resolution data and more detailed subsurface imaging. The use of cloud computing and high-performance computing platforms is also expected to enhance the processing and analysis of large datasets, making predictive models more efficient and scalable. The comprehensive review concludes by highlighting the importance of interdisciplinary collaboration in advancing rock physics methodologies. By combining expertise from geophysics, petrophysics, geomechanics, and data science, the field can continue to innovate and improve the accuracy and reliability of pore pressure predictions, ultimately enhancing exploration and production efficiency in the oil and gas industry. Keywords: Advances, Rock Physics, Pore Pressure, Prediction, Future Directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Oscar发布了新的文献求助10
1秒前
李麟发布了新的文献求助10
1秒前
FallWhit3发布了新的文献求助10
3秒前
狂野萤应助lemon采纳,获得20
3秒前
科研通AI2S应助研友_ZlvGdL采纳,获得30
4秒前
4秒前
科研通AI2S应助小愚采纳,获得10
4秒前
舒适的平蓝完成签到,获得积分20
5秒前
真金小子完成签到 ,获得积分10
7秒前
儒雅尔白完成签到,获得积分10
7秒前
英俊的铭应助搞毛啊采纳,获得10
7秒前
7秒前
kk完成签到,获得积分10
8秒前
zp发布了新的文献求助10
8秒前
打打应助decademe采纳,获得10
9秒前
9秒前
HZW发布了新的文献求助10
10秒前
10秒前
小二郎应助11采纳,获得30
10秒前
思源应助yy采纳,获得10
10秒前
11秒前
3天完成签到,获得积分10
12秒前
swy发布了新的文献求助10
12秒前
ou发布了新的文献求助10
12秒前
13秒前
icefrog完成签到,获得积分10
14秒前
yyt完成签到,获得积分10
14秒前
隐形傲霜完成签到 ,获得积分10
15秒前
15秒前
15秒前
研友_ZlvGdL完成签到,获得积分20
15秒前
15秒前
Joker完成签到 ,获得积分10
16秒前
zbq完成签到,获得积分10
17秒前
西门吹雪9527完成签到,获得积分10
18秒前
ou完成签到,获得积分10
19秒前
19秒前
吉克发布了新的文献求助10
19秒前
迦南完成签到,获得积分10
19秒前
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260724
求助须知:如何正确求助?哪些是违规求助? 2901803
关于积分的说明 8317417
捐赠科研通 2571442
什么是DOI,文献DOI怎么找? 1397024
科研通“疑难数据库(出版商)”最低求助积分说明 653638
邀请新用户注册赠送积分活动 632123