Advances in rock physics for pore pressure prediction: A comprehensive review and future directions

杠杆(统计) 地球物理学 计算机科学 领域(数学) 预测建模 机器学习 地质学 人工智能 数据科学 数学 纯数学
作者
Adindu Donatus Ogbu,Kate A. Iwe,Williams Ozowe,Augusta Heavens Ikevuje
出处
期刊:Engineering science & tecnology journal [Fair East Publishers]
卷期号:5 (7): 2304-2322 被引量:4
标识
DOI:10.51594/estj.v5i7.1345
摘要

Advances in rock physics have significantly enhanced pore pressure prediction, a critical aspect of subsurface exploration and drilling operations. This comprehensive review delves into the latest developments in rock physics methodologies, integrating empirical, theoretical, and computational approaches to predict pore pressure more accurately. Traditional pore pressure prediction methods often rely on well log data and seismic attributes, but recent advancements have introduced innovative techniques that leverage the physical properties of rocks to provide more reliable predictions. Key advances include the development of improved rock physics models that better account for the complexities of subsurface environments, such as heterogeneity and anisotropy. These models integrate data from various sources, including well logs, core samples, and seismic surveys, to create a more comprehensive understanding of the subsurface. Additionally, the application of machine learning and artificial intelligence to rock physics has opened new avenues for analyzing large datasets, identifying patterns, and refining predictive models. This review also examines the role of laboratory experiments and field studies in validating and calibrating rock physics models. High-pressure and high-temperature experiments have provided valuable insights into the behavior of rocks under different conditions, which are essential for accurate pore pressure prediction. Field studies, on the other hand, offer real-world data that help in fine-tuning models and methodologies. Future directions in rock physics for pore pressure prediction include the integration of advanced geophysical techniques, such as full-waveform inversion and distributed acoustic sensing, which offer higher resolution data and more detailed subsurface imaging. The use of cloud computing and high-performance computing platforms is also expected to enhance the processing and analysis of large datasets, making predictive models more efficient and scalable. The comprehensive review concludes by highlighting the importance of interdisciplinary collaboration in advancing rock physics methodologies. By combining expertise from geophysics, petrophysics, geomechanics, and data science, the field can continue to innovate and improve the accuracy and reliability of pore pressure predictions, ultimately enhancing exploration and production efficiency in the oil and gas industry. Keywords: Advances, Rock Physics, Pore Pressure, Prediction, Future Directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吴巷玉完成签到,获得积分10
1秒前
will发布了新的文献求助10
1秒前
如意的手套完成签到,获得积分10
2秒前
科研通AI2S应助流星雨采纳,获得10
2秒前
英姑应助Lily采纳,获得50
2秒前
小小区发布了新的文献求助10
2秒前
zz发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
wjr1212345完成签到 ,获得积分20
5秒前
栗子完成签到,获得积分10
6秒前
马霄鑫完成签到,获得积分10
6秒前
高挑的听南完成签到,获得积分10
6秒前
可爱多应助像风一样自由采纳,获得10
7秒前
Wtony完成签到 ,获得积分10
7秒前
zhuyuxin完成签到,获得积分10
8秒前
Anita发布了新的文献求助10
8秒前
陈哈哈完成签到,获得积分10
10秒前
jenna完成签到,获得积分10
10秒前
健康的宛菡完成签到 ,获得积分10
10秒前
TG303完成签到,获得积分10
11秒前
郭莹莹发布了新的文献求助10
11秒前
xu11发布了新的文献求助10
12秒前
一日落叶发布了新的文献求助30
14秒前
平常毛衣完成签到,获得积分10
15秒前
15秒前
15秒前
归尘应助风中似狮采纳,获得10
16秒前
胖虎完成签到,获得积分10
17秒前
19秒前
xlll完成签到,获得积分10
20秒前
李健的小迷弟应助xh采纳,获得10
20秒前
姜姜姜姜发布了新的文献求助10
22秒前
兔BF完成签到,获得积分10
22秒前
Sandewna完成签到,获得积分20
23秒前
桐桐应助甜蜜的芾采纳,获得10
23秒前
tyyyyyy完成签到,获得积分10
24秒前
健壮不斜完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603665
求助须知:如何正确求助?哪些是违规求助? 4688648
关于积分的说明 14855380
捐赠科研通 4694577
什么是DOI,文献DOI怎么找? 2540936
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471814