清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Forecasting ecological water demand of an arid oasis under a drying climate scenario based on deep learning methods

干旱 环境科学 植被(病理学) 归一化差异植被指数 生态系统 气候变化 水文学(农业) 干旱指数 自然地理学 水资源管理 生态学 地理 地质学 生物 医学 岩土工程 病理
作者
Xudong Wang,Hao‐jie Xu,Yan‐xia Pan,Xuemei Yang
出处
期刊:Ecological Informatics [Elsevier]
卷期号:82: 102721-102721 被引量:3
标识
DOI:10.1016/j.ecoinf.2024.102721
摘要

Ecological water diversion projects (EWDP) are an effective management tool for restoring oasis ecosystems in arid regions. Given the potential for drier climatic conditions in arid regions in the future, it is essential to develop water diversion strategies that can adapt to climate change and reduce the risk of oasis ecosystem degradation. Here, this study used a Bayesian optimization-based long- and short-term memory (BO-LSTM) model to determine the optimal amount of water diversion needed to maintain healthy growth of oasis vegetation under future climate change scenarios in the Qingtu Oasis, which is a typical downstream oasis of inland rivers restored by EWDP in China. The results showed that the BO-LSTM model effectively captured the response of oasis vegetation to changes in water inundation areas and drought stress with low computational cost and high accuracy. The study revealed that regional vegetation became more vulnerable than previously thought when extreme drought and a drying trend were taken into account. It was found that if the amount of water entering the oasis ranges from 10 to 15 million m3, there will be a decline in the growth of oasis vegetation as indicated by the normalized difference vegetation index (NDVI). Even if current levels of water diversion (20 million m3) are maintained, oasis vegetation may still face growth decline due to meteorological drought. The optimal amount of water diversion was determined to be 25 million m3, resulting in a 21.7% increase in NDVI regardless of drought events. This study represents an innovative approach as it couples EWDP, climate change, and oasis vegetation dynamics based on deep learning models, which unveils divergent responses of oasis vegetation to climate change and EWDP and verifies a non-linear relationship between water diversion amounts and ecological benefits generated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助xun采纳,获得10
11秒前
krajicek完成签到,获得积分10
18秒前
24秒前
27秒前
许子发布了新的文献求助10
29秒前
文艺猫咪发布了新的文献求助10
30秒前
jessicaw完成签到,获得积分10
33秒前
36秒前
Ji完成签到,获得积分10
42秒前
白华苍松发布了新的文献求助10
42秒前
gwbk完成签到,获得积分10
51秒前
51秒前
白华苍松发布了新的文献求助10
1分钟前
许子完成签到,获得积分10
1分钟前
今后应助Anto采纳,获得10
1分钟前
1分钟前
xun发布了新的文献求助10
1分钟前
缥缈雍发布了新的文献求助20
2分钟前
清净163完成签到,获得积分10
2分钟前
2分钟前
2分钟前
陈纸溪发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
领导范儿应助残月初升采纳,获得10
3分钟前
晴天娃娃完成签到 ,获得积分10
3分钟前
3分钟前
残月初升发布了新的文献求助10
3分钟前
3分钟前
白华苍松发布了新的文献求助10
4分钟前
wanci应助陈纸溪采纳,获得10
4分钟前
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
陈纸溪发布了新的文献求助10
4分钟前
烟花应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
白华苍松发布了新的文献求助10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131390
关于积分的说明 9391041
捐赠科研通 2831096
什么是DOI,文献DOI怎么找? 1556360
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715853