已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A CIELAB fusion‐based generative adversarial network for reliable sand–dust removal in open‐pit mines

人工智能 计算机视觉 能见度 计算机科学 色空间 环境科学 图像(数学) 气象学 地理
作者
Xudong Li,Chong Liu,Yangyang Sun,Wujie Li,Jingmin Li
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.22387
摘要

Abstract Intelligent electric shovels are being developed for intelligent mining in open‐pit mines. Complex environment detection and target recognition based on image recognition technology are prerequisites for achieving intelligent electric shovel operation. However, there is a large amount of sand–dust in open‐pit mines, which can lead to low visibility and color shift in the environment during data collection, resulting in low‐quality images. The images collected for environmental perception in sand–dust environment can seriously affect the target detection and scene segmentation capabilities of intelligent electric shovels. Therefore, developing an effective image processing algorithm to solve these problems and improve the perception ability of intelligent electric shovels has become crucial. At present, methods based on deep learning have achieved good results in image dehazing, and have a certain correlation in image sand–dust removal. However, deep learning heavily relies on data sets, but existing data sets are concentrated in haze environments, with significant gaps in the data set of sand–dust images, especially in open‐pit mining scenes. Another bottleneck is the limited performance associated with traditional methods when removing sand–dust from images, such as image distortion and blurring. To address the aforementioned issues, a method for generating sand–dust image data based on atmospheric physical models and CIELAB color space features is proposed. The impact mechanism of sand–dust on images was analyzed through atmospheric physical models, and the formation of sand–dust images was divided into two parts: blurring and color deviation. We studied the blurring and color deviation effect generation theories based on atmospheric physical models and CIELAB color space, and designed a two‐stage sand–dust image generation method. We also constructed an open‐pit mine sand–dust data set in a real mining environment. Last but not least, this article takes generative adversarial network (GAN) as the research foundation and focuses on the formation mechanism of sand–dust image effects. The CIELAB color features are fused with the discriminator of GAN as basic priors and additional constraints to improve the discrimination effect. By combining the three feature components of CIELAB color space and comparing the algorithm performance, a feature fusion scheme is determined. The results show that the proposed method can generate clear and realistic images well, which helps to improve the performance of target detection and scene segmentation tasks in heavy sand–dust open‐pit mines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助原野小年采纳,获得10
1秒前
2秒前
Mia发布了新的文献求助10
4秒前
黙宇循光发布了新的文献求助10
4秒前
北海西贝完成签到,获得积分10
4秒前
AA发布了新的文献求助10
5秒前
6秒前
jj158完成签到,获得积分10
6秒前
香草完成签到 ,获得积分10
7秒前
gwrh发布了新的文献求助10
8秒前
慕青应助jj158采纳,获得50
9秒前
13秒前
13秒前
13秒前
微笑的涛应助Mia采纳,获得20
15秒前
15秒前
16秒前
Sam发布了新的文献求助10
18秒前
lily88发布了新的文献求助10
18秒前
科研通AI2S应助chslj采纳,获得10
20秒前
注册表z发布了新的文献求助10
26秒前
一屋鱼完成签到 ,获得积分10
27秒前
28秒前
NexusExplorer应助星辰大海采纳,获得10
28秒前
大龙哥886发布了新的文献求助10
33秒前
英姑应助Yuying采纳,获得10
34秒前
蓝天完成签到,获得积分10
34秒前
CynthiaaaCat发布了新的文献求助10
34秒前
36秒前
Wee完成签到 ,获得积分10
36秒前
总之完成签到 ,获得积分10
38秒前
39秒前
41秒前
大模型应助韩十四采纳,获得10
42秒前
44秒前
ww完成签到,获得积分10
45秒前
48秒前
49秒前
49秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801512
关于积分的说明 7845255
捐赠科研通 2459095
什么是DOI,文献DOI怎么找? 1308964
科研通“疑难数据库(出版商)”最低求助积分说明 628618
版权声明 601727