A CIELAB fusion‐based generative adversarial network for reliable sand–dust removal in open‐pit mines

人工智能 计算机视觉 能见度 计算机科学 色空间 环境科学 图像(数学) 气象学 地理
作者
Xudong Li,Chong Liu,Yangyang Sun,Wujie Li,Jingmin Li
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.22387
摘要

Abstract Intelligent electric shovels are being developed for intelligent mining in open‐pit mines. Complex environment detection and target recognition based on image recognition technology are prerequisites for achieving intelligent electric shovel operation. However, there is a large amount of sand–dust in open‐pit mines, which can lead to low visibility and color shift in the environment during data collection, resulting in low‐quality images. The images collected for environmental perception in sand–dust environment can seriously affect the target detection and scene segmentation capabilities of intelligent electric shovels. Therefore, developing an effective image processing algorithm to solve these problems and improve the perception ability of intelligent electric shovels has become crucial. At present, methods based on deep learning have achieved good results in image dehazing, and have a certain correlation in image sand–dust removal. However, deep learning heavily relies on data sets, but existing data sets are concentrated in haze environments, with significant gaps in the data set of sand–dust images, especially in open‐pit mining scenes. Another bottleneck is the limited performance associated with traditional methods when removing sand–dust from images, such as image distortion and blurring. To address the aforementioned issues, a method for generating sand–dust image data based on atmospheric physical models and CIELAB color space features is proposed. The impact mechanism of sand–dust on images was analyzed through atmospheric physical models, and the formation of sand–dust images was divided into two parts: blurring and color deviation. We studied the blurring and color deviation effect generation theories based on atmospheric physical models and CIELAB color space, and designed a two‐stage sand–dust image generation method. We also constructed an open‐pit mine sand–dust data set in a real mining environment. Last but not least, this article takes generative adversarial network (GAN) as the research foundation and focuses on the formation mechanism of sand–dust image effects. The CIELAB color features are fused with the discriminator of GAN as basic priors and additional constraints to improve the discrimination effect. By combining the three feature components of CIELAB color space and comparing the algorithm performance, a feature fusion scheme is determined. The results show that the proposed method can generate clear and realistic images well, which helps to improve the performance of target detection and scene segmentation tasks in heavy sand–dust open‐pit mines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小刺发布了新的文献求助10
1秒前
机灵安白完成签到 ,获得积分10
2秒前
科研通AI5应助夏夏采纳,获得10
3秒前
酷波er应助夏夏采纳,获得10
3秒前
NexusExplorer应助夏夏采纳,获得10
3秒前
科研通AI2S应助夏夏采纳,获得10
3秒前
积极冷霜发布了新的文献求助10
3秒前
3秒前
Ava应助夏夏采纳,获得10
3秒前
科目三应助夏夏采纳,获得10
3秒前
丘比特应助夏夏采纳,获得10
3秒前
小马甲应助夏夏采纳,获得10
3秒前
3秒前
wary发布了新的文献求助10
4秒前
Genius完成签到,获得积分10
4秒前
张掖发布了新的文献求助10
6秒前
金虎完成签到,获得积分10
6秒前
小董不懂完成签到,获得积分10
6秒前
大晨发布了新的文献求助10
6秒前
斯文败类应助Liu采纳,获得10
7秒前
李爱国应助脆弱的仙人掌采纳,获得10
8秒前
打打应助张自信采纳,获得10
8秒前
8秒前
虚幻羊发布了新的文献求助10
9秒前
沙拉发布了新的文献求助10
9秒前
iNk应助陈淑玲采纳,获得10
9秒前
科研通AI2S应助BWZ采纳,获得10
9秒前
9秒前
10秒前
Ade完成签到,获得积分10
11秒前
11秒前
lx840518发布了新的文献求助10
11秒前
兴奋大开完成签到,获得积分10
12秒前
虚幻羊完成签到,获得积分20
12秒前
Meng完成签到,获得积分10
13秒前
张掖完成签到,获得积分10
13秒前
Lucas应助kangkang采纳,获得10
14秒前
大晨完成签到,获得积分10
14秒前
哈哈哈haha发布了新的文献求助20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762