A CIELAB fusion‐based generative adversarial network for reliable sand–dust removal in open‐pit mines

人工智能 计算机视觉 能见度 计算机科学 色空间 环境科学 图像(数学) 气象学 地理
作者
Xudong Li,Chong Liu,Yangyang Sun,Wujie Li,Jingmin Li
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.22387
摘要

Abstract Intelligent electric shovels are being developed for intelligent mining in open‐pit mines. Complex environment detection and target recognition based on image recognition technology are prerequisites for achieving intelligent electric shovel operation. However, there is a large amount of sand–dust in open‐pit mines, which can lead to low visibility and color shift in the environment during data collection, resulting in low‐quality images. The images collected for environmental perception in sand–dust environment can seriously affect the target detection and scene segmentation capabilities of intelligent electric shovels. Therefore, developing an effective image processing algorithm to solve these problems and improve the perception ability of intelligent electric shovels has become crucial. At present, methods based on deep learning have achieved good results in image dehazing, and have a certain correlation in image sand–dust removal. However, deep learning heavily relies on data sets, but existing data sets are concentrated in haze environments, with significant gaps in the data set of sand–dust images, especially in open‐pit mining scenes. Another bottleneck is the limited performance associated with traditional methods when removing sand–dust from images, such as image distortion and blurring. To address the aforementioned issues, a method for generating sand–dust image data based on atmospheric physical models and CIELAB color space features is proposed. The impact mechanism of sand–dust on images was analyzed through atmospheric physical models, and the formation of sand–dust images was divided into two parts: blurring and color deviation. We studied the blurring and color deviation effect generation theories based on atmospheric physical models and CIELAB color space, and designed a two‐stage sand–dust image generation method. We also constructed an open‐pit mine sand–dust data set in a real mining environment. Last but not least, this article takes generative adversarial network (GAN) as the research foundation and focuses on the formation mechanism of sand–dust image effects. The CIELAB color features are fused with the discriminator of GAN as basic priors and additional constraints to improve the discrimination effect. By combining the three feature components of CIELAB color space and comparing the algorithm performance, a feature fusion scheme is determined. The results show that the proposed method can generate clear and realistic images well, which helps to improve the performance of target detection and scene segmentation tasks in heavy sand–dust open‐pit mines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咪咪发布了新的文献求助10
刚刚
里尔吉恩完成签到,获得积分10
1秒前
酷波er应助我要发sci采纳,获得10
1秒前
1秒前
1秒前
凉凉应助阳光冰颜采纳,获得10
3秒前
3秒前
Clover发布了新的文献求助10
4秒前
5秒前
7秒前
木木完成签到,获得积分10
7秒前
甜橙完成签到 ,获得积分10
7秒前
7秒前
打打应助1_1采纳,获得10
7秒前
烂漫的夏之完成签到,获得积分10
7秒前
8秒前
Eason小川发布了新的文献求助10
9秒前
马华化完成签到,获得积分0
10秒前
10秒前
陶醉的雪柳完成签到 ,获得积分10
10秒前
牛牛牛应助张晶晶采纳,获得10
10秒前
11秒前
上官若男应助susancat采纳,获得10
11秒前
Blessing发布了新的文献求助10
12秒前
12秒前
12秒前
无限连发布了新的文献求助30
12秒前
研友_Z7XY28完成签到,获得积分10
12秒前
Clover完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
高挑的不凡完成签到,获得积分10
14秒前
CAOHOU应助庾楼月宛如昨采纳,获得10
14秒前
快乐的画笔完成签到,获得积分20
14秒前
15秒前
KL完成签到 ,获得积分10
16秒前
fanlin完成签到,获得积分0
16秒前
Blessing完成签到,获得积分10
17秒前
渣义发布了新的文献求助10
17秒前
hugh完成签到,获得积分10
18秒前
FashionBoy应助PPPhua采纳,获得10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010081
求助须知:如何正确求助?哪些是违规求助? 3550086
关于积分的说明 11304770
捐赠科研通 3284597
什么是DOI,文献DOI怎么找? 1810722
邀请新用户注册赠送积分活动 886535
科研通“疑难数据库(出版商)”最低求助积分说明 811451