Prediction of tensile strength using machine learning algorithms in fused deposition modeling

极限抗拉强度 沉积(地质) 算法 计算机科学 人工智能 机器学习 材料科学 复合材料 地质学 沉积物 古生物学
作者
Kautilya Patel,Nisarg Trivedi,Dhaval B. Shah,Shashikant Joshi
标识
DOI:10.1177/09544089241286428
摘要

Additive manufacturing provides unique advantages in creating complex parts, and among its methods, fused deposition modeling uses molten thermoplastic layers for diverse applications. Machine learning, an artificial intelligence technique, enhances additive manufacturing capabilities by enabling predictions and improving process control, designs, material properties, and production efficiency. The paper aims to utilize accurate machine learning-based algorithms for data analysis, and parameter optimization to predict the mechanical properties of the product. The results obtained through the support vector machine model integrating with the Tsai–Wu theory are in good agreement with experimental values observed at a print speed of 40 mm/s and a layer thickness of 0.2 mm. While the Levenberg–Marquardt algorithm in the artificial neural network has better prediction accuracy with mean absolute percentage errors of 4.22% and 3.53% for tensile and flexural strength, which is higher than the support vector machine. Furthermore, the research emphasizes the significant impact of printing speed on product quality by implementing analysis of variance with a percentage contribution ratio of ∼45%. This comparison allows manufacturers to make informed decisions and effectively optimize the additive manufacturing process. Machine learning algorithm utilization in additive manufacturing holds immense potential for elevating quality, efficiency, and reliability in this transformative industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助小李博士采纳,获得10
1秒前
1秒前
2秒前
汉堡包应助Kvolu29采纳,获得10
2秒前
不一样的光完成签到,获得积分10
3秒前
4秒前
彭于晏应助寂寞的寄松采纳,获得10
4秒前
山野发布了新的文献求助10
4秒前
Owen应助DeepLearning采纳,获得10
5秒前
6秒前
菲菲发布了新的文献求助10
6秒前
ziyuexu发布了新的文献求助10
7秒前
ZWK发布了新的文献求助10
7秒前
TiAmo给TiAmo的求助进行了留言
7秒前
9秒前
就晚安喽完成签到 ,获得积分10
9秒前
周宋完成签到 ,获得积分10
10秒前
可爱的函函应助log采纳,获得10
11秒前
柚子发布了新的文献求助10
12秒前
13秒前
姽婳wy发布了新的文献求助10
13秒前
小二郎应助Reid采纳,获得10
13秒前
舟舟完成签到 ,获得积分10
14秒前
香蕉觅云应助含蓄虔纹采纳,获得10
14秒前
SciGPT应助kingwill采纳,获得30
15秒前
yurunxintian完成签到,获得积分10
16秒前
大模型应助谦让真采纳,获得30
18秒前
18秒前
FIN应助科研通管家采纳,获得30
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得30
19秒前
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
彳亍1117应助科研通管家采纳,获得20
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
小豆豆应助科研通管家采纳,获得10
19秒前
19秒前
天天快乐应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962850
求助须知:如何正确求助?哪些是违规求助? 3508775
关于积分的说明 11142938
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791625
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803571