Food-derived salty peptides have been considered promising substitutes for sodium salt. In this work, three novel salty dipeptides Asp-Pro (DP), Asp-Arg (DR), and Arg-Glu (RE) were identified from bovine bone hydrolysates. The salt reduction rates were 76.85 %, 77.28 %, and 73.72 % by the three peptides (2 mg/mL) in a NaCl concentration of 0.203 g/100 mL, respectively. According to Stevens' law, a non-linear relationship between saltiness intensity and concentration was quantified, showing a slower increase in the sensory intensity perception compared with the changes in physical concentration (β < 1). In molecular detail, electrostatic energy and van der Waals energy were the main energetic contributions to forming stable complexes. The binding of salty peptides to TMC4 was driven by hydrogen bonding and salt bridge, and the main binding sites were Glu319, Ala579, and Thr581. These results could provide new insight into the salt-enhancing property and interaction mechanism of salty peptides as novel sodium substitutes.