清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An initial game-theoretic assessment of enhanced tissue preparation and imaging protocols for improved deep learning inference of spatial transcriptomics from tissue morphology

计算机科学 深度学习 人工智能 推论 H&E染色 机器学习 病理 生物医学工程 染色 医学
作者
Michael Fatemi,Yunrui Lu,Alos Diallo,Gokul Raghavendra Srinivasan,Zarif L. Azher,Brock C. Christensen,Lucas A. Salas,Gregory J. Tsongalis,Scott M. Palisoul,Laurent Perreard,Fred Kolling,Louis Vaickus,Joshua J. Levy
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae476
摘要

Abstract The application of deep learning to spatial transcriptomics (ST) can reveal relationships between gene expression and tissue architecture. Prior work has demonstrated that inferring gene expression from tissue histomorphology can discern these spatial molecular markers to enable population scale studies, reducing the fiscal barriers associated with large–scale spatial profiling. However, while most improvements in algorithmic performance have focused on improving model architectures, little is known about how the quality of tissue preparation and imaging can affect deep learning model training for spatial inference from morphology and its potential for widespread clinical adoption. Prior studies for ST inference from histology typically utilize manually stained frozen sections with imaging on non-clinical grade scanners. Training such models on ST cohorts is also costly. We hypothesize that adopting tissue processing and imaging practices that mirror standards for clinical implementation (permanent sections, automated tissue staining, and clinical grade scanning) can significantly improve model performance. An enhanced specimen processing and imaging protocol was developed for deep learning-based ST inference from morphology. This protocol featured the Visium CytAssist assay to permit automated hematoxylin and eosin staining (e.g. Leica Bond), 40×-resolution imaging, and joining of multiple patients’ tissue sections per capture area prior to ST profiling. Using a cohort of 13 pathologic T Stage-III stage colorectal cancer patients, we compared the performance of models trained on slide prepared using enhanced versus traditional (i.e. manual staining and low-resolution imaging) protocols. Leveraging Inceptionv3 neural networks, we predicted gene expression across serial, histologically-matched tissue sections using whole slide images (WSI) from both protocols. The data Shapley was used to quantify and compare marginal performance gains on a patient-by-patient basis attributed to using the enhanced protocol versus the actual costs of spatial profiling. Findings indicate that training and validating on WSI acquired through the enhanced protocol as opposed to the traditional method resulted in improved performance at lower fiscal cost. In the realm of ST, the enhancement of deep learning architectures frequently captures the spotlight; however, the significance of specimen processing and imaging is often understated. This research, informed through a game-theoretic lens, underscores the substantial impact that specimen preparation/imaging can have on spatial transcriptomic inference from morphology. It is essential to integrate such optimized processing protocols to facilitate the identification of prognostic markers at a larger scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
tctc发布了新的文献求助10
3秒前
胜天半子完成签到 ,获得积分10
11秒前
刻苦代灵完成签到,获得积分20
11秒前
yuiip完成签到 ,获得积分10
16秒前
刻苦代灵发布了新的文献求助10
26秒前
29秒前
32秒前
56秒前
1分钟前
1分钟前
33应助科研通管家采纳,获得10
1分钟前
方羽应助科研通管家采纳,获得50
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
方羽应助科研通管家采纳,获得50
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
刻苦代灵发布了新的文献求助10
2分钟前
YZ完成签到 ,获得积分10
3分钟前
IlIIlIlIIIllI应助科研通管家采纳,获得20
3分钟前
33应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
斯文败类应助刻苦代灵采纳,获得10
3分钟前
3分钟前
方俊驰完成签到,获得积分10
4分钟前
微笑的井完成签到 ,获得积分10
4分钟前
luckss发布了新的文献求助10
4分钟前
香蕉觅云应助暴走小虎采纳,获得30
5分钟前
方羽应助科研通管家采纳,获得100
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
ceeray23应助复杂荧采纳,获得10
5分钟前
漂亮土豆完成签到,获得积分10
5分钟前
5分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445148
求助须知:如何正确求助?哪些是违规求助? 3041200
关于积分的说明 8984041
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497162
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689714