纤维增强塑料
有限元法
结构工程
人工神经网络
非线性系统
压缩(物理)
材料科学
计算机科学
复合材料
工程类
机器学习
量子力学
物理
作者
Ahmed Babeker Elhag,Ali Raza,Nabil Ben Kahla,Muhammed Arshad
出处
期刊:Multidiscipline Modeling in Materials and Structures
[Emerald (MCB UP)]
日期:2024-08-08
标识
DOI:10.1108/mmms-03-2024-0070
摘要
Purpose The external confinement provided by the fiber-reinforced polymer (FRP) sheets leads to an improvement in the axial compressive strength (CS) and strain of reinforced concrete structural members. Many studies have proposed analytical models to predict the axial CS of concrete structural members, but the predictions for the axial compressive strain still need more investigation because the previous strain models are not accurate enough. Moreover, the previous strain models were proposed using small and noisy databases using simple modeling techniques. Therefore, a rigorous approach is needed to propose a more accurate strain model and compare its predictions with the previous models. Design/methodology/approach The present work has endeavored to propose strain models for FRP-confined concrete members using three different techniques: analytical modeling, artificial neural network (ANN) modeling and finite element analysis (FEA) modeling based on a large database consisting of 570 sample points. Findings The assessment of the previous models using some statistical parameters revealed that the estimates of the newly recommended models were more accurate than the previous models. The estimates of the new models were validated using the experimental outcomes of compressive members confined with carbon-fiber-reinforced polymer (CFRP) wraps. The nonlinear FEA of the tested samples was performed using ABAQUS, and its estimates were equated with the calculations of the analytical and ANN models. The relative investigation of the estimates solidly substantiates the accuracy and applicability of the recommended analytical, ANN and FEA models for predicting the axial strain of CFRP-confined concrete compression members. Originality/value The research introduces innovative methods for understanding FRP confinement in concrete, presenting new models to estimate axial compressive strains. Utilizing a database of 570 experimental samples, the study employs ANNs and regression analysis to develop these models. Existing models for FRP-confined concrete's axial strains are also assessed using this database. Validation involves testing 18 cylindrical specimens confined with CFRP wraps and FE simulations using a concrete-damaged plastic (CDP) model. A comprehensive comparative analysis compares experimental results with estimates from ANNs, analytical and finite element models (FEMs), offering valuable insights and predictive tools for FRP confinement in concrete.
科研通智能强力驱动
Strongly Powered by AbleSci AI