Reliability analysis of various modeling techniques for the prediction of axial strain of FRP-confined concrete

纤维增强塑料 有限元法 结构工程 人工神经网络 非线性系统 压缩(物理) 材料科学 计算机科学 复合材料 工程类 机器学习 量子力学 物理
作者
Ahmed Babeker Elhag,Ali Raza,Nabil Ben Kahla,Muhammed Arshad
出处
期刊:Multidiscipline Modeling in Materials and Structures [Emerald (MCB UP)]
标识
DOI:10.1108/mmms-03-2024-0070
摘要

Purpose The external confinement provided by the fiber-reinforced polymer (FRP) sheets leads to an improvement in the axial compressive strength (CS) and strain of reinforced concrete structural members. Many studies have proposed analytical models to predict the axial CS of concrete structural members, but the predictions for the axial compressive strain still need more investigation because the previous strain models are not accurate enough. Moreover, the previous strain models were proposed using small and noisy databases using simple modeling techniques. Therefore, a rigorous approach is needed to propose a more accurate strain model and compare its predictions with the previous models. Design/methodology/approach The present work has endeavored to propose strain models for FRP-confined concrete members using three different techniques: analytical modeling, artificial neural network (ANN) modeling and finite element analysis (FEA) modeling based on a large database consisting of 570 sample points. Findings The assessment of the previous models using some statistical parameters revealed that the estimates of the newly recommended models were more accurate than the previous models. The estimates of the new models were validated using the experimental outcomes of compressive members confined with carbon-fiber-reinforced polymer (CFRP) wraps. The nonlinear FEA of the tested samples was performed using ABAQUS, and its estimates were equated with the calculations of the analytical and ANN models. The relative investigation of the estimates solidly substantiates the accuracy and applicability of the recommended analytical, ANN and FEA models for predicting the axial strain of CFRP-confined concrete compression members. Originality/value The research introduces innovative methods for understanding FRP confinement in concrete, presenting new models to estimate axial compressive strains. Utilizing a database of 570 experimental samples, the study employs ANNs and regression analysis to develop these models. Existing models for FRP-confined concrete's axial strains are also assessed using this database. Validation involves testing 18 cylindrical specimens confined with CFRP wraps and FE simulations using a concrete-damaged plastic (CDP) model. A comprehensive comparative analysis compares experimental results with estimates from ANNs, analytical and finite element models (FEMs), offering valuable insights and predictive tools for FRP confinement in concrete.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzuli_liu完成签到,获得积分10
1秒前
1秒前
1秒前
英姑应助糟糕的颜采纳,获得10
1秒前
2秒前
wkjfh完成签到,获得积分0
2秒前
ENG发布了新的文献求助30
2秒前
3秒前
什么时候毕业溪溪完成签到,获得积分10
3秒前
可爱的函函应助一念之间采纳,获得10
4秒前
充电宝应助干鞅采纳,获得10
4秒前
113发布了新的文献求助10
4秒前
眼睛大枫发布了新的文献求助10
5秒前
5秒前
6秒前
hhhhh发布了新的文献求助10
7秒前
骀荡完成签到,获得积分20
7秒前
魁梧的盼夏完成签到,获得积分10
8秒前
酷酷云朵发布了新的文献求助10
8秒前
9秒前
小田天天开心完成签到 ,获得积分10
9秒前
9秒前
fei举报HJY求助涉嫌违规
9秒前
zho应助苏千景采纳,获得10
10秒前
威武QY发布了新的文献求助10
10秒前
nn发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
14秒前
Hello应助一寒采纳,获得10
14秒前
14秒前
14秒前
领导范儿应助穆仰采纳,获得10
15秒前
范12完成签到,获得积分10
15秒前
16秒前
16秒前
文静灵发布了新的文献求助10
16秒前
寇博翔发布了新的文献求助10
17秒前
威武QY完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588962
求助须知:如何正确求助?哪些是违规求助? 4671741
关于积分的说明 14789385
捐赠科研通 4626869
什么是DOI,文献DOI怎么找? 2532017
邀请新用户注册赠送积分活动 1500619
关于科研通互助平台的介绍 1468373