重编程
泛素
细胞生物学
纤维化
肾
化学
癌症研究
内分泌学
生物
内科学
细胞
医学
生物化学
基因
作者
Yang Wen,Maoqing Tian,Xu-shun Jiang,Ying Gong,Hua Gan
摘要
Chronic kidney disease (CKD), stemming from varied nephric impairments, manifests a steadily escalating global incidence. As a progressive pathological condition, CKD is typified by an intensification in the gravity of renal interstitium fibrotic transformations. Nonetheless, the intrinsic mechanisms underpinning nephric fibrosis remain elusive. In this context, we elucidated a marked augmentation in aerobic glycolysis within proximal tubular epithelial cells (TECs) of CKD patients, alongside unilateral ureteral obstruction (UUO) and ischemia-reperfusion injury (IRI) murine models, concomitant with deficiency of Trim21. Experimental investigations, both in vivo and in vitro, revealed that Trim21 deficiency aggravates the aberrantly heightened aerobic glycolysis, thereby exacerbating fibrotic reaction progression. Concomitantly, enhancive glycolytic flux paralleled an elevation in ATP genesis and reconstitution of cytoskeletal architecture. Mechanistically, we uncovered that Trim21 modulates aerobic glycolysis in TECs via ubiquitin-facilitated degradation of phosphofructokinase platelet (PFKP), thus attenuating nephric fibrosis. Collectively, our insights posit Trim21 as a prospective therapeutic target in the amelioration of renal fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI