四环素
光催化
降级(电信)
废水
四环素类抗生素
抗生素
污水处理
污染物
环境化学
化学
废物管理
环境科学
环境工程
催化作用
计算机科学
有机化学
电信
生物化学
工程类
作者
Hongxia Zhang,H.R. Azimi,M.R. Mahmoudian,Mehdi Ebadi,Razieh Moradi,Abbas Shirmardi,Ramin Yousefi
标识
DOI:10.1016/j.jenvman.2024.122734
摘要
This study focuses on the development of an efficient photocatalyst for degrading hospital wastewater, specifically targeting the degradation of the antibiotic tetracycline (TC). We introduce a novel 2D/2D heterostructure photocatalyst composed of graphitic carbon nitride (g-CN), functionalized with silver nanoparticles (Ag NPs) and reduced graphene oxide (rGO). The primary aim is to enhance the photocatalytic performance of g-CN through the synergistic effects of Ag NPs and rGO. The rGO/Ag/g-CN nanocomposites demonstrated remarkable photocatalytic activity, achieving over 97% TC degradation within 60 min under commercial LED light irradiation. Additionally, these photocatalysts were used to remove other antibiotics, such as doxycycline hydrochloride and ofloxacin, and it was observed that the nanocomposite effectively removed these antibiotics as well. This enhanced performance is attributed to the surface plasmon resonance (SPR) effects of Ag NPs and the electron sink properties of rGO, which were confirmed through comprehensive physicochemical characterization. Various concentrations of Ag NPs and rGO were tested to optimize the nanocomposite synthesis, with optical and electrical characterizations, including photoluminescence (PL), electrochemical impedance spectroscopy (EIS), and Mott-Schottky (M-S) measurements, revealing higher electron-hole pair generation rates and carrier concentrations in the rGO/Ag/g-CN nanocomposites compared to pristine g-CN, Ag/g-CN, and rGO/g-CN. The results demonstrate the potential of the rGO/Ag/g-CN photocatalyst as a cost-effective and scalable solution for the treatment of medical pollutants in wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI