Unveiling the main drivers of tree decline in Zagros semi-arid forests

干旱 地理 林业 树(集合论) 农林复合经营 生态学 环境科学 生物 数学 数学分析
作者
Elham Shafeian,Michael Ewald,Hooman Latifi,Fabian Ewald Fassnacht
出处
期刊:Forestry [Oxford University Press]
标识
DOI:10.1093/forestry/cpae048
摘要

Abstract Tree decline in arid and semi-arid forest ecosystems causes severe socioeconomic and ecological problems and thus needs to be thoroughly quantified and monitored across space and time. This study investigates tree and forest decline in Iran’s Zagros forests, considering environmental factors (e.g. topographic, soil, and climatic variables). We used field data from Chaharmahal-and-Bakhtiari (a study area covering 165 km2) and environmental data derived from freely available databases. Relationships between tree, forest decline, and environmental data were analyzed using generalized additive models. Our findings reveal that slope and the BioClim-16 variable (precipitation of the wettest quarter) significantly influence tree decline across various decline classes (P-values: slope = .009, BioClim-16 = .02). The best multivariate model for forest decline incorporated soil organic carbon and silt as predictive variables, with soil organic carbon emerging as the key factor (P-value = .04). Additionally, a spectral analysis of bare soil in declining and non-declining areas consistently demonstrated reduced reflectance values in declining regions across 10 Sentinel-2 bands, with VNIR-3, SWIR-2, red, green, and blue bands consistently showing significant differences as unveiled by the Wilcoxon test in all seasons except winter. These reduced reflectance values may indicate that forests stocked on soils with larger grain size (a higher fraction of sand) and/or higher organic carbon content may be more vulnerable to decline. This study contributes to our hitherto understanding of the main drivers of tree and forest decline in semi-arid forests, among others underscoring the potential utility of the spectral properties of bare soil in sparse semi-arid forests to predict the likelihood of tree decline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小达人完成签到,获得积分20
刚刚
1秒前
李哈哈发布了新的文献求助10
1秒前
XYJ1发布了新的文献求助10
1秒前
1秒前
勤劳平彤完成签到,获得积分10
2秒前
2秒前
2秒前
ding应助臻灏采纳,获得10
3秒前
XUXU发布了新的文献求助10
3秒前
微凉完成签到 ,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
深情的玉米完成签到 ,获得积分10
5秒前
Jasper应助伍佰采纳,获得10
5秒前
6秒前
6秒前
苹果音响发布了新的文献求助10
7秒前
英吉利25发布了新的文献求助10
7秒前
风中天蓉发布了新的文献求助50
8秒前
羽宇发布了新的文献求助10
9秒前
LL完成签到 ,获得积分10
10秒前
11秒前
11秒前
liuaoo发布了新的文献求助10
11秒前
12秒前
田様应助ernest采纳,获得30
14秒前
14秒前
14秒前
14秒前
橙子abcy完成签到,获得积分10
14秒前
15秒前
卷发麦麦发布了新的文献求助10
15秒前
wanci应助lllcx采纳,获得10
15秒前
kke发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
16秒前
每天都想发文章完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753463
求助须知:如何正确求助?哪些是违规求助? 5481244
关于积分的说明 15378197
捐赠科研通 4892357
什么是DOI,文献DOI怎么找? 2631179
邀请新用户注册赠送积分活动 1579248
关于科研通互助平台的介绍 1535000