Unveiling the main drivers of tree decline in Zagros semi-arid forests

干旱 地理 林业 树(集合论) 农林复合经营 生态学 环境科学 生物 数学 数学分析
作者
Elham Shafeian,Michael Ewald,Hooman Latifi,Fabian Ewald Fassnacht
出处
期刊:Forestry [Oxford University Press]
标识
DOI:10.1093/forestry/cpae048
摘要

Abstract Tree decline in arid and semi-arid forest ecosystems causes severe socioeconomic and ecological problems and thus needs to be thoroughly quantified and monitored across space and time. This study investigates tree and forest decline in Iran’s Zagros forests, considering environmental factors (e.g. topographic, soil, and climatic variables). We used field data from Chaharmahal-and-Bakhtiari (a study area covering 165 km2) and environmental data derived from freely available databases. Relationships between tree, forest decline, and environmental data were analyzed using generalized additive models. Our findings reveal that slope and the BioClim-16 variable (precipitation of the wettest quarter) significantly influence tree decline across various decline classes (P-values: slope = .009, BioClim-16 = .02). The best multivariate model for forest decline incorporated soil organic carbon and silt as predictive variables, with soil organic carbon emerging as the key factor (P-value = .04). Additionally, a spectral analysis of bare soil in declining and non-declining areas consistently demonstrated reduced reflectance values in declining regions across 10 Sentinel-2 bands, with VNIR-3, SWIR-2, red, green, and blue bands consistently showing significant differences as unveiled by the Wilcoxon test in all seasons except winter. These reduced reflectance values may indicate that forests stocked on soils with larger grain size (a higher fraction of sand) and/or higher organic carbon content may be more vulnerable to decline. This study contributes to our hitherto understanding of the main drivers of tree and forest decline in semi-arid forests, among others underscoring the potential utility of the spectral properties of bare soil in sparse semi-arid forests to predict the likelihood of tree decline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长琴思顾完成签到,获得积分10
2秒前
2秒前
靓仔要亮发布了新的文献求助10
4秒前
cc发布了新的文献求助10
4秒前
4秒前
天天发布了新的文献求助30
5秒前
CodeCraft应助要减肥的乐曲采纳,获得10
6秒前
7秒前
曹丛通发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
鲤鱼谷秋发布了新的文献求助10
11秒前
桐桐应助杏杏采纳,获得10
11秒前
11秒前
11秒前
李爱国应助我的文献采纳,获得10
11秒前
Rasink完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
零度火发布了新的文献求助10
13秒前
13秒前
朴实的南露完成签到,获得积分10
14秒前
zhengxc完成签到,获得积分10
14秒前
樱桃发布了新的文献求助10
15秒前
15秒前
15秒前
华仔应助幸福的羿采纳,获得10
16秒前
Guo发布了新的文献求助10
16秒前
jjjdcjcj完成签到,获得积分10
16秒前
KY发布了新的文献求助10
17秒前
所所应助高天雨采纳,获得10
17秒前
所所应助企福采纳,获得10
17秒前
fengjingjing发布了新的文献求助10
18秒前
18秒前
叶子完成签到,获得积分10
18秒前
19秒前
smottom应助biubiuu采纳,获得10
19秒前
20秒前
zzz完成签到,获得积分10
21秒前
倩Q发布了新的文献求助10
21秒前
樱桃完成签到,获得积分10
22秒前
xiang发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323