Rolling bearing fault diagnosis based on Efficient Time Channel Attention optimized deep Multi-scale Convolutional Neural Networks

卷积神经网络 计算机科学 断层(地质) 比例(比率) 方位(导航) 频道(广播) 深层神经网络 深度学习 人工神经网络 人工智能 模式识别(心理学) 地质学 电信 地震学 地图学 地理
作者
Ou Li,Jing Zhu,Minghui Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:2
标识
DOI:10.1088/1361-6501/ad7a91
摘要

Abstract In rolling bearing fault diagnosis, the collected vibration signal has nonlinear and non-Gaussian characteristics, which makes the signal feature extraction incomplete during the feature extraction process, leading to reduced fault diagnosis accuracy. This article proposes a model based on Efficient Time Channel Attention Depth Multi-Scale Convolutional Neural Network (EMCNN) to solve the above problems. This method designs a multi-scale hierarchical expansion strategy in the Multi-Scale Convolutional Neural Network (MSCNN), which can effectively extract different ranges of information from the signal. In addition, the Efficient Time Channel Attention module (E-TCAM) is designed and embedded into the MSCNN to enhance the attention to the important features in both channel and time dimensions, and also to avoid the problem of feature redundancy. Adamax optimization algorithm is used as the optimizer, which realizes the automatic adjustment and optimization of the learning rate and greatly improves the model training efficiency and performance performance. The effectiveness of the method was verified using the datasets from Case Western Reserve University and Xi'an Jiaotong University. By comparing with other diagnostic models, it was verified that the method had a high diagnostic rate and good generalization performance under nonlinear and non-Gaussian complex characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小朱完成签到 ,获得积分10
刚刚
刚刚
宝海青发布了新的文献求助10
刚刚
1秒前
2秒前
竹外桃花发布了新的文献求助10
3秒前
3秒前
zbclzf完成签到,获得积分10
3秒前
丑鸭发布了新的文献求助10
3秒前
Hello应助陶醉的萧采纳,获得10
3秒前
00完成签到,获得积分10
3秒前
4秒前
爆米花发布了新的文献求助10
4秒前
可爱的函函应助科研狗采纳,获得10
4秒前
ding应助和谐晓啸采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
科研苦笔完成签到,获得积分10
6秒前
福尔摩蔡发布了新的文献求助10
6秒前
依恋完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
小趴菜应助hhh采纳,获得10
8秒前
8秒前
LioXH完成签到,获得积分10
8秒前
wuyuzegang完成签到,获得积分10
8秒前
叶落孤城发布了新的文献求助10
9秒前
伊伊完成签到,获得积分10
9秒前
小趴菜应助ly采纳,获得10
9秒前
内向的如天完成签到,获得积分10
10秒前
张伊完成签到,获得积分10
10秒前
竹外桃花完成签到,获得积分10
11秒前
11秒前
顾宇发布了新的文献求助10
12秒前
12秒前
车轮滚滚完成签到,获得积分20
13秒前
13秒前
汉堡包应助快乐寄风采纳,获得10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951344
求助须知:如何正确求助?哪些是违规求助? 3496706
关于积分的说明 11083953
捐赠科研通 3227150
什么是DOI,文献DOI怎么找? 1784304
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801102