Rolling bearing fault diagnosis based on Efficient Time Channel Attention optimized deep Multi-scale Convolutional Neural Networks

卷积神经网络 计算机科学 断层(地质) 比例(比率) 方位(导航) 频道(广播) 深层神经网络 深度学习 人工神经网络 人工智能 模式识别(心理学) 地质学 电信 地震学 地图学 地理
作者
Ou Li,Jing Zhu,Minghui Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7a91
摘要

Abstract In rolling bearing fault diagnosis, the collected vibration signal has nonlinear and non-Gaussian characteristics, which makes the signal feature extraction incomplete during the feature extraction process, leading to reduced fault diagnosis accuracy. This article proposes a model based on Efficient Time Channel Attention Depth Multi-Scale Convolutional Neural Network (EMCNN) to solve the above problems. This method designs a multi-scale hierarchical expansion strategy in the Multi-Scale Convolutional Neural Network (MSCNN), which can effectively extract different ranges of information from the signal. In addition, the Efficient Time Channel Attention module (E-TCAM) is designed and embedded into the MSCNN to enhance the attention to the important features in both channel and time dimensions, and also to avoid the problem of feature redundancy. Adamax optimization algorithm is used as the optimizer, which realizes the automatic adjustment and optimization of the learning rate and greatly improves the model training efficiency and performance performance. The effectiveness of the method was verified using the datasets from Case Western Reserve University and Xi'an Jiaotong University. By comparing with other diagnostic models, it was verified that the method had a high diagnostic rate and good generalization performance under nonlinear and non-Gaussian complex characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tuesday完成签到 ,获得积分10
刚刚
刚刚
1秒前
阿毛发布了新的文献求助10
2秒前
3秒前
情怀应助灵巧荆采纳,获得10
3秒前
Ll发布了新的文献求助10
3秒前
Peter发布了新的文献求助30
4秒前
4秒前
5秒前
科研韭菜发布了新的文献求助10
5秒前
科研通AI5应助爱学习采纳,获得10
5秒前
科研通AI5应助跳跃的太阳采纳,获得10
5秒前
苏尔琳诺完成签到,获得积分10
5秒前
科研通AI5应助a1oft采纳,获得10
6秒前
6秒前
关关过完成签到,获得积分10
6秒前
呢不辣完成签到,获得积分10
6秒前
6秒前
shi hui应助陈博士采纳,获得10
6秒前
6秒前
糖糖关注了科研通微信公众号
7秒前
7秒前
小恶于完成签到 ,获得积分10
7秒前
科研通AI2S应助落晨采纳,获得10
8秒前
8秒前
9秒前
半颗橙子发布了新的文献求助10
9秒前
小可爱完成签到 ,获得积分10
9秒前
10秒前
11秒前
11秒前
Jiangnj发布了新的文献求助30
11秒前
samantha完成签到,获得积分10
12秒前
12秒前
俎树同完成签到 ,获得积分10
12秒前
Natsu完成签到,获得积分10
12秒前
马保国123发布了新的文献求助10
13秒前
丘比特应助无限的隶采纳,获得10
13秒前
在云里爱与歌完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762