Hepatocellular Carcinoma Immune Microenvironment Analysis: A Comprehensive Assessment with Computational and Classical Pathology

免疫系统 肝细胞癌 免疫组织化学 病理 间质细胞 医学 肿瘤异质性 免疫分型 基质 癌症 免疫学 流式细胞术 癌症研究 内科学
作者
Caner Ercan,Salvatore Lorenzo Renne,Luca Di Tommaso,Charlotte K.Y. Ng,Salvatore Piscuoglio,Luigi Terracciano
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
被引量:4
标识
DOI:10.1158/1078-0432.ccr-24-0960
摘要

Abstract Purpose: The spatial variability and clinical relevance of the tumour immune microenvironment (TIME) are still poorly understood for hepatocellular carcinoma (HCC). Here we aim to develop a deep learning (DL)-based image analysis model for the spatial analysis of immune cell biomarkers, and microscopically evaluate the distribution of immune infiltration. Experimental Design: Ninety-two HCC surgical liver resections and 51 matched needle biopsies were histologically classified according to their immunophenotypes: inflamed, immune-excluded, and immune-desert. To characterise the TIME on immunohistochemistry (IHC)-stained slides, we designed a multi-stage DL algorithm, IHC-TIME, to automatically detect immune cells and their localisation in TIME in tumour-stromal, centre-border segments. Results: Two models were trained to detect and localise the immune cells on IHC-stained slides. The framework models, i.e. immune cell detection models and tumour-stroma segmentation, reached 98% and 91% accuracy, respectively. Patients with inflamed tumours showed better recurrence-free survival than those with immune-excluded or immune desert tumours. Needle biopsies were found to be 75% accurate in representing the immunophenotypes of the main tumour. Finally, we developed an algorithm that defines immunophenotypes automatically based on the IHC-TIME analysis, achieving an accuracy of 80%. Conclusions: Our DL-based tool can accurately analyse and quantify immune cells on IHC-stained slides of HCC. The microscopical classification of the TIME can stratify HCCs according to the patient prognosis. Needle biopsies can provide valuable insights for TIME-related prognostic prediction, albeit with specific constraints. The computational pathology tool provides a new way to study the HCC TIME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
1秒前
十二发布了新的文献求助10
1秒前
请不要挂机完成签到,获得积分10
1秒前
柔弱的尔白完成签到,获得积分10
2秒前
超级如风完成签到,获得积分10
2秒前
dengbing2000完成签到,获得积分10
2秒前
宇宙的中心完成签到,获得积分10
3秒前
Mikey_Teng完成签到,获得积分10
3秒前
冯晓潮完成签到 ,获得积分10
3秒前
啾一口香菜完成签到 ,获得积分10
3秒前
张子陌完成签到 ,获得积分20
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
南巷酒肆完成签到,获得积分10
4秒前
大方的荟完成签到,获得积分10
4秒前
Hello应助孤独的心锁采纳,获得10
4秒前
科研通AI5应助LF-Scie采纳,获得200
4秒前
4秒前
5秒前
xinc完成签到,获得积分10
5秒前
Mikey_Teng发布了新的文献求助10
5秒前
RJ123456完成签到,获得积分10
5秒前
斯文败类应助彩色立辉采纳,获得10
5秒前
6秒前
Eureka完成签到 ,获得积分10
6秒前
ZIVON完成签到,获得积分10
6秒前
6秒前
6秒前
斯文败类应助幸福五采纳,获得10
6秒前
幻影发布了新的文献求助10
6秒前
6秒前
bob完成签到,获得积分10
6秒前
科研通AI5应助TN采纳,获得10
6秒前
李清杰发布了新的文献求助10
6秒前
lj完成签到,获得积分10
6秒前
7秒前
啦啦啦完成签到,获得积分20
7秒前
天真的雨完成签到,获得积分10
7秒前
8秒前
lcy完成签到,获得积分10
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5150811
求助须知:如何正确求助?哪些是违规求助? 4346573
关于积分的说明 13533545
捐赠科研通 4189288
什么是DOI,文献DOI怎么找? 2297425
邀请新用户注册赠送积分活动 1297790
关于科研通互助平台的介绍 1242353