Hepatocellular Carcinoma Immune Microenvironment Analysis: A Comprehensive Assessment with Computational and Classical Pathology

免疫系统 肝细胞癌 免疫组织化学 病理 间质细胞 医学 肿瘤异质性 免疫分型 基质 癌症 免疫学 流式细胞术 癌症研究 内科学
作者
Caner Ercan,Salvatore Lorenzo Renne,Luca Di Tommaso,Charlotte K.Y. Ng,Salvatore Piscuoglio,Luigi Terracciano
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
被引量:4
标识
DOI:10.1158/1078-0432.ccr-24-0960
摘要

Abstract Purpose: The spatial variability and clinical relevance of the tumour immune microenvironment (TIME) are still poorly understood for hepatocellular carcinoma (HCC). Here we aim to develop a deep learning (DL)-based image analysis model for the spatial analysis of immune cell biomarkers, and microscopically evaluate the distribution of immune infiltration. Experimental Design: Ninety-two HCC surgical liver resections and 51 matched needle biopsies were histologically classified according to their immunophenotypes: inflamed, immune-excluded, and immune-desert. To characterise the TIME on immunohistochemistry (IHC)-stained slides, we designed a multi-stage DL algorithm, IHC-TIME, to automatically detect immune cells and their localisation in TIME in tumour-stromal, centre-border segments. Results: Two models were trained to detect and localise the immune cells on IHC-stained slides. The framework models, i.e. immune cell detection models and tumour-stroma segmentation, reached 98% and 91% accuracy, respectively. Patients with inflamed tumours showed better recurrence-free survival than those with immune-excluded or immune desert tumours. Needle biopsies were found to be 75% accurate in representing the immunophenotypes of the main tumour. Finally, we developed an algorithm that defines immunophenotypes automatically based on the IHC-TIME analysis, achieving an accuracy of 80%. Conclusions: Our DL-based tool can accurately analyse and quantify immune cells on IHC-stained slides of HCC. The microscopical classification of the TIME can stratify HCCs according to the patient prognosis. Needle biopsies can provide valuable insights for TIME-related prognostic prediction, albeit with specific constraints. The computational pathology tool provides a new way to study the HCC TIME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
最最完成签到,获得积分10
1秒前
zhangyapeng完成签到,获得积分10
1秒前
陈末应助雪山飞龙采纳,获得10
1秒前
halabouqii发布了新的文献求助10
2秒前
2秒前
3秒前
浅念关注了科研通微信公众号
3秒前
咖褐发布了新的文献求助10
3秒前
祖诗云完成签到,获得积分10
3秒前
小蘑菇应助璟晔采纳,获得10
4秒前
zybbb发布了新的文献求助10
4秒前
魏京京完成签到,获得积分10
4秒前
4秒前
小蘑菇应助Sylvia采纳,获得10
4秒前
yaya完成签到,获得积分10
4秒前
哇奥发布了新的文献求助10
5秒前
阿莫西西林完成签到,获得积分10
5秒前
潘多拉完成签到,获得积分10
5秒前
赘婿应助认真的TOTORO采纳,获得10
5秒前
dxannie完成签到,获得积分10
5秒前
我是老大应助熊熊熊采纳,获得10
6秒前
6秒前
唠叨的秋蝶完成签到,获得积分10
6秒前
徐木木完成签到,获得积分10
6秒前
6秒前
怡然凝云发布了新的文献求助10
6秒前
7秒前
AIO完成签到,获得积分10
7秒前
7秒前
吐个泡泡完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
Fsy发布了新的文献求助30
9秒前
科研通AI2S应助ada采纳,获得10
9秒前
高兴123发布了新的文献求助10
10秒前
畅快若剑发布了新的文献求助10
10秒前
温婉的谷菱完成签到,获得积分10
10秒前
OKYT发布了新的文献求助10
10秒前
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572