Hepatocellular Carcinoma Immune Microenvironment Analysis: A Comprehensive Assessment with Computational and Classical Pathology

免疫系统 肝细胞癌 免疫组织化学 病理 间质细胞 医学 肿瘤异质性 免疫分型 基质 癌症 免疫学 流式细胞术 癌症研究 内科学
作者
Caner Ercan,Salvatore Lorenzo Renne,Luca Di Tommaso,Charlotte K.Y. Ng,Salvatore Piscuoglio,Luigi Terracciano
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
被引量:4
标识
DOI:10.1158/1078-0432.ccr-24-0960
摘要

Abstract Purpose: The spatial variability and clinical relevance of the tumour immune microenvironment (TIME) are still poorly understood for hepatocellular carcinoma (HCC). Here we aim to develop a deep learning (DL)-based image analysis model for the spatial analysis of immune cell biomarkers, and microscopically evaluate the distribution of immune infiltration. Experimental Design: Ninety-two HCC surgical liver resections and 51 matched needle biopsies were histologically classified according to their immunophenotypes: inflamed, immune-excluded, and immune-desert. To characterise the TIME on immunohistochemistry (IHC)-stained slides, we designed a multi-stage DL algorithm, IHC-TIME, to automatically detect immune cells and their localisation in TIME in tumour-stromal, centre-border segments. Results: Two models were trained to detect and localise the immune cells on IHC-stained slides. The framework models, i.e. immune cell detection models and tumour-stroma segmentation, reached 98% and 91% accuracy, respectively. Patients with inflamed tumours showed better recurrence-free survival than those with immune-excluded or immune desert tumours. Needle biopsies were found to be 75% accurate in representing the immunophenotypes of the main tumour. Finally, we developed an algorithm that defines immunophenotypes automatically based on the IHC-TIME analysis, achieving an accuracy of 80%. Conclusions: Our DL-based tool can accurately analyse and quantify immune cells on IHC-stained slides of HCC. The microscopical classification of the TIME can stratify HCCs according to the patient prognosis. Needle biopsies can provide valuable insights for TIME-related prognostic prediction, albeit with specific constraints. The computational pathology tool provides a new way to study the HCC TIME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY发布了新的文献求助10
刚刚
tmobiusx完成签到,获得积分10
1秒前
那时花开应助科研通管家采纳,获得10
1秒前
那时花开应助科研通管家采纳,获得10
1秒前
3秒前
Roy完成签到,获得积分10
3秒前
文献求助完成签到,获得积分10
4秒前
似水流年完成签到 ,获得积分10
6秒前
binshier完成签到,获得积分10
12秒前
15秒前
Eclipse12138完成签到,获得积分10
16秒前
东山寺下学习的人完成签到,获得积分10
19秒前
lx关闭了lx文献求助
22秒前
LJX完成签到 ,获得积分10
26秒前
lx完成签到,获得积分20
28秒前
成就的书包完成签到,获得积分10
33秒前
lx发布了新的文献求助630
33秒前
Celeste应助爱听歌的含烟采纳,获得10
34秒前
系小小鱼啊完成签到 ,获得积分10
36秒前
36秒前
蘅皋发布了新的文献求助10
42秒前
彭洪凯完成签到,获得积分10
43秒前
44秒前
吹梦西洲完成签到,获得积分10
47秒前
Stuki完成签到,获得积分10
47秒前
是真的完成签到 ,获得积分10
49秒前
谨慎板栗发布了新的文献求助20
51秒前
ding应助蘅皋采纳,获得10
52秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
57秒前
文献狗完成签到,获得积分10
1分钟前
1分钟前
养猪大户完成签到 ,获得积分10
1分钟前
呆小婷儿发布了新的文献求助10
1分钟前
1分钟前
1分钟前
federish完成签到 ,获得积分10
1分钟前
YIYI发布了新的文献求助10
1分钟前
ylky完成签到 ,获得积分10
1分钟前
程若男发布了新的文献求助10
1分钟前
1111完成签到,获得积分10
1分钟前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378385
求助须知:如何正确求助?哪些是违规求助? 4502816
关于积分的说明 14014575
捐赠科研通 4411403
什么是DOI,文献DOI怎么找? 2423255
邀请新用户注册赠送积分活动 1416172
关于科研通互助平台的介绍 1393591