Hepatocellular Carcinoma Immune Microenvironment Analysis: A Comprehensive Assessment with Computational and Classical Pathology

免疫系统 肝细胞癌 免疫组织化学 病理 间质细胞 医学 肿瘤异质性 免疫分型 基质 癌症 免疫学 流式细胞术 癌症研究 内科学
作者
Caner Ercan,Salvatore Lorenzo Renne,Luca Di Tommaso,Charlotte K.Y. Ng,Salvatore Piscuoglio,Luigi Terracciano
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
被引量:1
标识
DOI:10.1158/1078-0432.ccr-24-0960
摘要

Abstract Purpose: The spatial variability and clinical relevance of the tumour immune microenvironment (TIME) are still poorly understood for hepatocellular carcinoma (HCC). Here we aim to develop a deep learning (DL)-based image analysis model for the spatial analysis of immune cell biomarkers, and microscopically evaluate the distribution of immune infiltration. Experimental Design: Ninety-two HCC surgical liver resections and 51 matched needle biopsies were histologically classified according to their immunophenotypes: inflamed, immune-excluded, and immune-desert. To characterise the TIME on immunohistochemistry (IHC)-stained slides, we designed a multi-stage DL algorithm, IHC-TIME, to automatically detect immune cells and their localisation in TIME in tumour-stromal, centre-border segments. Results: Two models were trained to detect and localise the immune cells on IHC-stained slides. The framework models, i.e. immune cell detection models and tumour-stroma segmentation, reached 98% and 91% accuracy, respectively. Patients with inflamed tumours showed better recurrence-free survival than those with immune-excluded or immune desert tumours. Needle biopsies were found to be 75% accurate in representing the immunophenotypes of the main tumour. Finally, we developed an algorithm that defines immunophenotypes automatically based on the IHC-TIME analysis, achieving an accuracy of 80%. Conclusions: Our DL-based tool can accurately analyse and quantify immune cells on IHC-stained slides of HCC. The microscopical classification of the TIME can stratify HCCs according to the patient prognosis. Needle biopsies can provide valuable insights for TIME-related prognostic prediction, albeit with specific constraints. The computational pathology tool provides a new way to study the HCC TIME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mysci完成签到,获得积分10
刚刚
1秒前
Quzhengkai发布了新的文献求助10
2秒前
2秒前
3秒前
落寞晓灵完成签到,获得积分10
3秒前
ORAzzz应助翠翠采纳,获得20
4秒前
zoe完成签到,获得积分10
4秒前
习习应助学术小白采纳,获得10
4秒前
5秒前
6秒前
tianny关注了科研通微信公众号
7秒前
7秒前
CO2发布了新的文献求助10
7秒前
桐桐应助zhangscience采纳,获得10
8秒前
求助发布了新的文献求助10
9秒前
buno应助zoe采纳,获得10
10秒前
junzilan发布了新的文献求助10
10秒前
10秒前
细品岁月完成签到 ,获得积分10
10秒前
细心书蕾完成签到 ,获得积分10
11秒前
无花果应助l11x29采纳,获得10
13秒前
13秒前
老詹头发布了新的文献求助10
13秒前
思源应助叫滚滚采纳,获得10
14秒前
15秒前
刘歌完成签到 ,获得积分10
15秒前
阿巡完成签到,获得积分10
15秒前
Chen完成签到,获得积分10
17秒前
LSH970829发布了新的文献求助10
17秒前
哈哈哈完成签到 ,获得积分10
18秒前
汤姆完成签到,获得积分10
18秒前
20秒前
20秒前
翠翠完成签到,获得积分10
21秒前
21秒前
LSH970829完成签到,获得积分10
22秒前
Lyg完成签到,获得积分20
23秒前
坚强的樱发布了新的文献求助10
23秒前
baodingning完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808