Hepatocellular Carcinoma Immune Microenvironment Analysis: A Comprehensive Assessment with Computational and Classical Pathology

免疫系统 肝细胞癌 免疫组织化学 病理 间质细胞 医学 肿瘤异质性 免疫分型 基质 癌症 免疫学 流式细胞术 癌症研究 内科学
作者
Caner Ercan,Salvatore Lorenzo Renne,Luca Di Tommaso,Charlotte K.Y. Ng,Salvatore Piscuoglio,Luigi Terracciano
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
被引量:2
标识
DOI:10.1158/1078-0432.ccr-24-0960
摘要

Abstract Purpose: The spatial variability and clinical relevance of the tumour immune microenvironment (TIME) are still poorly understood for hepatocellular carcinoma (HCC). Here we aim to develop a deep learning (DL)-based image analysis model for the spatial analysis of immune cell biomarkers, and microscopically evaluate the distribution of immune infiltration. Experimental Design: Ninety-two HCC surgical liver resections and 51 matched needle biopsies were histologically classified according to their immunophenotypes: inflamed, immune-excluded, and immune-desert. To characterise the TIME on immunohistochemistry (IHC)-stained slides, we designed a multi-stage DL algorithm, IHC-TIME, to automatically detect immune cells and their localisation in TIME in tumour-stromal, centre-border segments. Results: Two models were trained to detect and localise the immune cells on IHC-stained slides. The framework models, i.e. immune cell detection models and tumour-stroma segmentation, reached 98% and 91% accuracy, respectively. Patients with inflamed tumours showed better recurrence-free survival than those with immune-excluded or immune desert tumours. Needle biopsies were found to be 75% accurate in representing the immunophenotypes of the main tumour. Finally, we developed an algorithm that defines immunophenotypes automatically based on the IHC-TIME analysis, achieving an accuracy of 80%. Conclusions: Our DL-based tool can accurately analyse and quantify immune cells on IHC-stained slides of HCC. The microscopical classification of the TIME can stratify HCCs according to the patient prognosis. Needle biopsies can provide valuable insights for TIME-related prognostic prediction, albeit with specific constraints. The computational pathology tool provides a new way to study the HCC TIME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCC完成签到 ,获得积分10
1秒前
1秒前
快乐马发布了新的文献求助10
1秒前
酷波er应助nn采纳,获得10
1秒前
GT发布了新的文献求助10
1秒前
刚子完成签到 ,获得积分10
5秒前
黑苹果发布了新的文献求助10
6秒前
科研通AI5应助哦哦采纳,获得10
6秒前
孤傲的静脉完成签到 ,获得积分10
7秒前
孤独的钻石完成签到,获得积分10
8秒前
Eureka完成签到 ,获得积分20
8秒前
8秒前
小蘑菇应助快乐马采纳,获得10
9秒前
仁者无惧完成签到 ,获得积分10
13秒前
echo完成签到 ,获得积分10
13秒前
浪浪山完成签到,获得积分10
14秒前
小二郎应助vict采纳,获得30
14秒前
二三发布了新的文献求助10
15秒前
烟花应助WN采纳,获得10
15秒前
blueskyzhi完成签到,获得积分10
16秒前
隐形曼青应助zy采纳,获得10
17秒前
sct完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
XS_QI完成签到 ,获得积分10
24秒前
25秒前
Eureka关注了科研通微信公众号
26秒前
JamesPei应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
ED应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
夕诙应助科研通管家采纳,获得20
28秒前
28秒前
望北完成签到 ,获得积分10
28秒前
29秒前
30秒前
30秒前
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343