A Multi-Fruit Recognition Method for a Fruit-Harvesting Robot Using MSA-Net and Hough Transform Elliptical Detection Compensation

霍夫变换 园艺 人工智能 计算机视觉 补偿(心理学) 数学 计算机科学 模式识别(心理学) 生物 图像(数学) 心理学 精神分析
作者
Shengxue Wang,Tianhong Luo
出处
期刊:Horticulturae [MDPI AG]
卷期号:10 (10): 1024-1024
标识
DOI:10.3390/horticulturae10101024
摘要

In the context of agricultural modernization and intelligentization, automated fruit recognition is of significance for improving harvest efficiency and reducing labor costs. The variety of fruits commonly planted in orchards and the fluctuations in market prices require farmers to adjust the types of crops they plant flexibly. However, the differences in size, shape, and color among different types of fruits make fruit recognition quite challenging. If each type of fruit requires a separate visual model, it becomes time-consuming and labor intensive to train and deploy these models, as well as increasing system complexity and maintenance costs. Therefore, developing a general visual model capable of recognizing multiple types of fruits has great application potential. Existing multi-fruit recognition methods mainly include traditional image processing techniques and deep learning models. Traditional methods perform poorly in dealing with complex backgrounds and diverse fruit morphologies, while current deep learning models may struggle to effectively capture and recognize targets of different scales. To address these challenges, this paper proposes a general fruit recognition model based on the Multi-Scale Attention Network (MSA-Net) and a Hough Transform localization compensation mechanism. By generating multi-scale feature maps through a multi-scale attention mechanism, the model enhances feature learning for fruits of different sizes. In addition, the Hough Transform ellipse detection compensation mechanism uses the shape features of fruits and combines them with MSA-Net recognition results to correct the initial positioning of spherical fruits and improve positioning accuracy. Experimental results show that the MSA-Net model achieves a precision of 97.56, a recall of 92.21, and an mAP@0.5 of 94.81 on a comprehensive dataset containing blueberries, lychees, strawberries, and tomatoes, demonstrating the ability to accurately recognize multiple types of fruits. Moreover, the introduction of the Hough Transform mechanism reduces the average localization error by 8.8 pixels and 3.5 pixels for fruit images at different distances, effectively improving the accuracy of fruit localization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夏青荷发布了新的文献求助10
4秒前
包子牛奶完成签到,获得积分10
5秒前
孙卫平发布了新的文献求助10
6秒前
纪元龙完成签到,获得积分10
7秒前
Dawn完成签到,获得积分10
9秒前
13秒前
15秒前
一根藤完成签到,获得积分10
15秒前
上官若男应助怡然灵珊采纳,获得10
18秒前
雪白的灵竹完成签到,获得积分10
19秒前
aDou完成签到 ,获得积分10
20秒前
21秒前
付银薇完成签到,获得积分10
22秒前
留胡子的画板完成签到,获得积分10
26秒前
Miracle发布了新的文献求助10
27秒前
wanci应助科研通管家采纳,获得10
28秒前
无花果应助科研通管家采纳,获得30
28秒前
脑洞疼应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
小尹同学应助科研通管家采纳,获得30
28秒前
Akim应助科研通管家采纳,获得30
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
CodeCraft应助科研通管家采纳,获得30
28秒前
28秒前
淡淡尔冬应助科研通管家采纳,获得10
28秒前
kiki发布了新的文献求助10
30秒前
万物更始完成签到,获得积分10
30秒前
隐形曼青应助Violet采纳,获得30
32秒前
Miracle完成签到,获得积分10
32秒前
鹅鹅鹅完成签到,获得积分10
36秒前
无花果应助魔幻的凝芙采纳,获得30
36秒前
djh完成签到,获得积分10
37秒前
传奇3应助kiki采纳,获得10
39秒前
科研通AI2S应助kiki采纳,获得10
39秒前
领导范儿应助kiki采纳,获得10
40秒前
haoooooooooooooo应助kiki采纳,获得10
40秒前
Aliothae应助kiki采纳,获得10
40秒前
大模型应助kiki采纳,获得10
40秒前
科目三应助kiki采纳,获得100
40秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152043
求助须知:如何正确求助?哪些是违规求助? 2803339
关于积分的说明 7853343
捐赠科研通 2460804
什么是DOI,文献DOI怎么找? 1310058
科研通“疑难数据库(出版商)”最低求助积分说明 629097
版权声明 601765