亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-Fruit Recognition Method for a Fruit-Harvesting Robot Using MSA-Net and Hough Transform Elliptical Detection Compensation

霍夫变换 园艺 人工智能 计算机视觉 补偿(心理学) 数学 计算机科学 模式识别(心理学) 生物 图像(数学) 心理学 精神分析
作者
Shengxue Wang,Tianhong Luo
出处
期刊:Horticulturae [Multidisciplinary Digital Publishing Institute]
卷期号:10 (10): 1024-1024
标识
DOI:10.3390/horticulturae10101024
摘要

In the context of agricultural modernization and intelligentization, automated fruit recognition is of significance for improving harvest efficiency and reducing labor costs. The variety of fruits commonly planted in orchards and the fluctuations in market prices require farmers to adjust the types of crops they plant flexibly. However, the differences in size, shape, and color among different types of fruits make fruit recognition quite challenging. If each type of fruit requires a separate visual model, it becomes time-consuming and labor intensive to train and deploy these models, as well as increasing system complexity and maintenance costs. Therefore, developing a general visual model capable of recognizing multiple types of fruits has great application potential. Existing multi-fruit recognition methods mainly include traditional image processing techniques and deep learning models. Traditional methods perform poorly in dealing with complex backgrounds and diverse fruit morphologies, while current deep learning models may struggle to effectively capture and recognize targets of different scales. To address these challenges, this paper proposes a general fruit recognition model based on the Multi-Scale Attention Network (MSA-Net) and a Hough Transform localization compensation mechanism. By generating multi-scale feature maps through a multi-scale attention mechanism, the model enhances feature learning for fruits of different sizes. In addition, the Hough Transform ellipse detection compensation mechanism uses the shape features of fruits and combines them with MSA-Net recognition results to correct the initial positioning of spherical fruits and improve positioning accuracy. Experimental results show that the MSA-Net model achieves a precision of 97.56, a recall of 92.21, and an mAP@0.5 of 94.81 on a comprehensive dataset containing blueberries, lychees, strawberries, and tomatoes, demonstrating the ability to accurately recognize multiple types of fruits. Moreover, the introduction of the Hough Transform mechanism reduces the average localization error by 8.8 pixels and 3.5 pixels for fruit images at different distances, effectively improving the accuracy of fruit localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肉丸完成签到 ,获得积分10
4秒前
广州小肥羊完成签到 ,获得积分10
33秒前
34秒前
zhengxiaoyu发布了新的文献求助10
37秒前
38秒前
领导范儿应助大猫采纳,获得10
46秒前
Hiraeth完成签到 ,获得积分10
50秒前
55秒前
天天快乐应助zhengxiaoyu采纳,获得10
55秒前
chichqq发布了新的文献求助10
59秒前
1分钟前
CodeCraft应助chichqq采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
务实书包完成签到,获得积分10
1分钟前
wry完成签到,获得积分10
1分钟前
1分钟前
快乐的惜儿完成签到,获得积分20
1分钟前
坦率紫菜完成签到,获得积分10
2分钟前
矜天完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
610完成签到 ,获得积分10
3分钟前
3分钟前
筱灬发布了新的文献求助10
3分钟前
Tonyzad完成签到,获得积分10
3分钟前
3分钟前
herococa应助科研通管家采纳,获得50
3分钟前
健壮的花瓣完成签到 ,获得积分10
3分钟前
zyjx完成签到 ,获得积分10
3分钟前
3分钟前
大猫完成签到,获得积分10
3分钟前
大猫发布了新的文献求助10
3分钟前
4分钟前
yookia应助Tonyzad采纳,获得10
4分钟前
一梦丶初醒完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
upcdelx发布了新的文献求助100
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957025
求助须知:如何正确求助?哪些是违规求助? 3503031
关于积分的说明 11111168
捐赠科研通 3234068
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870728
科研通“疑难数据库(出版商)”最低求助积分说明 802250