已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Accuracy and Capability of Artificial Intelligence Solutions in Healthcare Exams and Certificates: A Systematic Review and Meta-Analysis (Preprint)

预印本 荟萃分析 医疗保健 心理学 医学教育 计算机科学 人工智能 数据科学 医学 万维网 内科学 经济增长 经济
作者
William Waldock,Joe Zhang,Ahmad Guni,Ahmad Nabeel,Ara Darzi,Hutan Ashrafian
出处
期刊:Journal of Medical Internet Research 卷期号:26: e56532-e56532
标识
DOI:10.2196/56532
摘要

Background Large language models (LLMs) have dominated public interest due to their apparent capability to accurately replicate learned knowledge in narrative text. However, there is a lack of clarity about the accuracy and capability standards of LLMs in health care examinations. Objective We conducted a systematic review of LLM accuracy, as tested under health care examination conditions, as compared to known human performance standards. Methods We quantified the accuracy of LLMs in responding to health care examination questions and evaluated the consistency and quality of study reporting. The search included all papers up until September 10, 2023, with all LLMs published in English journals that report clear LLM accuracy standards. The exclusion criteria were as follows: the assessment was not a health care exam, there was no LLM, there was no evaluation of comparable success accuracy, and the literature was not original research.The literature search included the following Medical Subject Headings (MeSH) terms used in all possible combinations: “artificial intelligence,” “ChatGPT,” “GPT,” “LLM,” “large language model,” “machine learning,” “neural network,” “Generative Pre-trained Transformer,” “Generative Transformer,” “Generative Language Model,” “Generative Model,” “medical exam,” “healthcare exam,” and “clinical exam.” Sensitivity, accuracy, and precision data were extracted, including relevant CIs. Results The search identified 1673 relevant citations. After removing duplicate results, 1268 (75.8%) papers were screened for titles and abstracts, and 32 (2.5%) studies were included for full-text review. Our meta-analysis suggested that LLMs are able to perform with an overall medical examination accuracy of 0.61 (CI 0.58-0.64) and a United States Medical Licensing Examination (USMLE) accuracy of 0.51 (CI 0.46-0.56), while Chat Generative Pretrained Transformer (ChatGPT) can perform with an overall medical examination accuracy of 0.64 (CI 0.6-0.67). Conclusions LLMs offer promise to remediate health care demand and staffing challenges by providing accurate and efficient context-specific information to critical decision makers. For policy and deployment decisions about LLMs to advance health care, we proposed a new framework called RUBRICC (Regulatory, Usability, Bias, Reliability [Evidence and Safety], Interoperability, Cost, and Codesign–Patient and Public Involvement and Engagement [PPIE]). This presents a valuable opportunity to direct the clinical commissioning of new LLM capabilities into health services, while respecting patient safety considerations. Trial Registration OSF Registries osf.io/xqzkw; https://osf.io/xqzkw
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助张脑丸采纳,获得10
2秒前
3秒前
5秒前
生动芝麻完成签到,获得积分10
8秒前
11秒前
11秒前
oooooo完成签到 ,获得积分10
12秒前
Tumbleweed668发布了新的文献求助10
12秒前
优美的慕山完成签到,获得积分10
13秒前
14秒前
情怀应助聪慧雪糕采纳,获得10
14秒前
16秒前
rick3455发布了新的文献求助10
18秒前
zzzzzzz发布了新的文献求助20
18秒前
Lucas应助迷你的颖采纳,获得10
19秒前
晨烟暮霭发布了新的文献求助10
19秒前
枇杷完成签到 ,获得积分10
20秒前
25秒前
26秒前
自信眼睛完成签到 ,获得积分10
26秒前
FashionBoy应助Tumbleweed668采纳,获得10
28秒前
ycliang应助jianhaohuang采纳,获得200
28秒前
疯狂的剑成完成签到,获得积分10
29秒前
光撒盐完成签到,获得积分10
30秒前
阳光过客发布了新的文献求助10
31秒前
暮光之城完成签到,获得积分10
31秒前
晨烟暮霭完成签到,获得积分20
32秒前
34秒前
科目三应助圆滚滚采纳,获得10
36秒前
Jasper应助zzzzzzz采纳,获得10
37秒前
38秒前
38秒前
优美飞薇发布了新的文献求助10
39秒前
虞头星星完成签到 ,获得积分10
42秒前
43秒前
野性的柠檬完成签到,获得积分10
43秒前
46秒前
哈哈哈哈完成签到,获得积分10
51秒前
51秒前
53秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310963
求助须知:如何正确求助?哪些是违规求助? 2943728
关于积分的说明 8516304
捐赠科研通 2619056
什么是DOI,文献DOI怎么找? 1431863
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649755