已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hydrovoltaic Effects from Mechanical–Electric Coupling at the Water–Solid Interface

接口(物质) 联轴节(管道) 固体表面 纳米技术 化学物理 材料科学 化学 润湿 坐滴法 复合材料
作者
Tao Hu,Kelan Zhang,Wei Deng,Wanlin Guo
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (35): 23912-23940
标识
DOI:10.1021/acsnano.4c07900
摘要

The natural water cycle on the Earth carries an enormous amount of energy as thirty-five percent of solar energy reaching the Earth's surface goes into water. However, only a very marginal part of the contained energy, mostly kinetic energy of large volume bulk water, is harvested by hydroelectric power plants. Natural processes in the water cycle, such as rainfall, water evaporation, and moisture adsorption, are widespread but have remained underexploited in the past due to the lack of appropriate technologies. In the past decade, the emergence of hydrovoltaic technology has provided ever-increasing opportunities to extend the technical capability for energy harvesting from the water cycle. Featuring electricity generation from mechanical-electric coupling at the water-solid interface, hydrovoltaic technology embraces almost all dynamic processes associated with water, including raining, waving, flowing, evaporating, and moisture adsorbing. This versatility in dealing with various forms of water and associated energy renders hydrovoltaic technology a solution for fossil fuel-caused environmental problems. Here, we review the current progress of hydrovoltaic energy harvesting from water motion, evaporation, and ambient moisture. Device configuration, energy conversion mechanism mediated by mechanical-electric coupling at various water-solid interfaces, as well as materials selection and functionalization are discussed. Useful strategies guided by established mechanisms for device optimization are then covered. Finally, we provide an outlook on this emerging field and outline the challenges of improving output performance toward potential practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
南北发布了新的文献求助30
2秒前
Miao发布了新的文献求助10
2秒前
虚心傲丝发布了新的文献求助10
2秒前
亲爱的安德烈完成签到,获得积分10
5秒前
黄12完成签到,获得积分10
9秒前
南北完成签到,获得积分10
9秒前
彩色莞完成签到 ,获得积分10
11秒前
2220完成签到 ,获得积分10
13秒前
16秒前
虚心傲丝完成签到,获得积分10
19秒前
爆米花应助zhong采纳,获得10
21秒前
黄12发布了新的文献求助10
21秒前
Murphy发布了新的文献求助10
23秒前
隐形曼青应助哈哈哈哈采纳,获得10
24秒前
Miao完成签到,获得积分20
24秒前
SciGPT应助zhong采纳,获得10
29秒前
Marvin完成签到 ,获得积分10
30秒前
隐形曼青应助MDW采纳,获得10
30秒前
桐桐应助恢复出厂设置采纳,获得10
32秒前
落后翠柏完成签到 ,获得积分10
33秒前
咿咿呀呀完成签到,获得积分10
33秒前
泥巴象完成签到 ,获得积分20
35秒前
39秒前
39秒前
敏静发布了新的文献求助10
42秒前
zhong发布了新的文献求助10
42秒前
44秒前
zhong发布了新的文献求助10
44秒前
zhong发布了新的文献求助10
44秒前
45秒前
Murphy完成签到,获得积分10
46秒前
46秒前
今后应助小明采纳,获得10
46秒前
MDW发布了新的文献求助10
48秒前
634301059发布了新的文献求助10
49秒前
50秒前
科研嘉完成签到,获得积分10
52秒前
www268完成签到 ,获得积分10
54秒前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162246
求助须知:如何正确求助?哪些是违规求助? 2813263
关于积分的说明 7899489
捐赠科研通 2472504
什么是DOI,文献DOI怎么找? 1316446
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142