Valorization of tomato processing by-products: Predictive modeling and optimization for ultrasound-assisted lycopene extraction

番茄红素 萃取(化学) 响应面法 相关系数 人工神经网络 产量(工程) 决定系数 生物系统 化学 类胡萝卜素 计算机科学 色谱法 材料科学 人工智能 食品科学 机器学习 生物 冶金
作者
Stefan Kuvendžiev,Kiril Lisichkov,Mirko Marinkovski,Martin Stojchevski,Darko Dimitrovski,Viktor Andonovikj
出处
期刊:Ultrasonics Sonochemistry [Elsevier]
卷期号:110: 107055-107055
标识
DOI:10.1016/j.ultsonch.2024.107055
摘要

Lycopene is a carotenoid highly valuable to the food, pharmaceutical, dye, and cosmetic industries, present in ripe tomatoes and other fruits with a distinctive red color. The main source of lycopene is tomato crops. This bioactive component can be successfully isolated from tomato processing waste, commonly called tomato pomace, mostly made from tomato skins, seeds, and some residual tomato tissue. The main investigative focus in this work was the application of green engineering principles in each stage of the optimized ultrasound-assisted extraction (UAE) of enzymatically treated tomato skins to obtain functional extracts rich in lycopene. The experimental plan was designed to determine the influence of studied operating parameters: enzymatic reaction time (60, 120, and 180 min), extraction time (0, 5, 10, 15, 30, 60, and 120 min), and temperature (25, 35 and 45 ℃) on lycopene yield. Process optimization was performed based on the yield of lycopene [1018, 1067, and 1120 mg/kg] achieved at optimal operating conditions. An artificial neural network (ANN) model was developed and trained for predictive modeling of the closed extraction system, with operating parameters used as input neurons and experimentally obtained values for lycopene content defined as the output neural layer. Applied ANN architecture provided a high correlation of experimental output with ANN-generated data (R=0.99914) with a model deviation error for the entire data set of RMSE=5.3 mg/kg. The k-Nearest Neighbor algorithm was introduced to predict lycopene yield using experimental key features: operating temperature, extraction time, and time of enzymatic treatment, split into training and testing sets with an 85/15 ratio. The model interpretation was conducted through the SHAP (SHapley Additive exPlanations) methodology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风华发布了新的文献求助10
1秒前
1秒前
Singularity应助千冬采纳,获得10
1秒前
青苹果完成签到,获得积分10
2秒前
lwl完成签到,获得积分10
2秒前
4秒前
田様应助txy采纳,获得10
4秒前
小二郎应助李书荣采纳,获得10
5秒前
温wen完成签到,获得积分10
5秒前
6秒前
娟儿完成签到 ,获得积分10
7秒前
wise111发布了新的文献求助20
8秒前
9秒前
大模型应助风华采纳,获得10
9秒前
upon完成签到,获得积分10
10秒前
10秒前
zhangling完成签到,获得积分10
13秒前
大肥猫发布了新的文献求助10
13秒前
大个应助国家栋梁采纳,获得10
14秒前
14秒前
16秒前
李书荣发布了新的文献求助10
16秒前
17秒前
星辰大海应助小丫采纳,获得10
17秒前
17秒前
17秒前
18秒前
Lichun完成签到,获得积分20
19秒前
ss1234ning发布了新的文献求助10
21秒前
Lichun发布了新的文献求助10
21秒前
赖向珊发布了新的文献求助10
22秒前
Gypsy发布了新的文献求助10
22秒前
pebble完成签到,获得积分20
22秒前
24秒前
蜗牛fei完成签到,获得积分10
25秒前
25秒前
26秒前
科研通AI2S应助梓歆采纳,获得10
26秒前
花花完成签到,获得积分20
26秒前
27秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214044
求助须知:如何正确求助?哪些是违规求助? 2862795
关于积分的说明 8135296
捐赠科研通 2529012
什么是DOI,文献DOI怎么找? 1363150
科研通“疑难数据库(出版商)”最低求助积分说明 643769
邀请新用户注册赠送积分活动 616200