重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Valorization of tomato processing by-products: Predictive modeling and optimization for ultrasound-assisted lycopene extraction

番茄红素 萃取(化学) 响应面法 相关系数 人工神经网络 产量(工程) 决定系数 生物系统 化学 类胡萝卜素 计算机科学 色谱法 材料科学 人工智能 食品科学 机器学习 生物 冶金
作者
Stefan Kuvendžiev,Kiril Lisichkov,Mirko Marinkovski,Martin Stojchevski,Darko Dimitrovski,Viktor Andonovikj
出处
期刊:Ultrasonics Sonochemistry [Elsevier]
卷期号:110: 107055-107055 被引量:7
标识
DOI:10.1016/j.ultsonch.2024.107055
摘要

Lycopene is a carotenoid highly valuable to the food, pharmaceutical, dye, and cosmetic industries, present in ripe tomatoes and other fruits with a distinctive red color. The main source of lycopene is tomato crops. This bioactive component can be successfully isolated from tomato processing waste, commonly called tomato pomace, mostly made from tomato skins, seeds, and some residual tomato tissue. The main investigative focus in this work was the application of green engineering principles in each stage of the optimized ultrasound-assisted extraction (UAE) of enzymatically treated tomato skins to obtain functional extracts rich in lycopene. The experimental plan was designed to determine the influence of studied operating parameters: enzymatic reaction time (60, 120, and 180 min), extraction time (0, 5, 10, 15, 30, 60, and 120 min), and temperature (25, 35 and 45 ℃) on lycopene yield. Process optimization was performed based on the yield of lycopene [1018, 1067, and 1120 mg/kg] achieved at optimal operating conditions. An artificial neural network (ANN) model was developed and trained for predictive modeling of the closed extraction system, with operating parameters used as input neurons and experimentally obtained values for lycopene content defined as the output neural layer. Applied ANN architecture provided a high correlation of experimental output with ANN-generated data (R=0.99914) with a model deviation error for the entire data set of RMSE=5.3 mg/kg. The k-Nearest Neighbor algorithm was introduced to predict lycopene yield using experimental key features: operating temperature, extraction time, and time of enzymatic treatment, split into training and testing sets with an 85/15 ratio. The model interpretation was conducted through the SHAP (SHapley Additive exPlanations) methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助DrYang采纳,获得10
1秒前
酷波er应助邹鋬采纳,获得10
1秒前
香蕉觅云应助gy采纳,获得10
1秒前
月亮0927发布了新的文献求助10
2秒前
2秒前
2秒前
光亮西牛完成签到 ,获得积分10
2秒前
天真松鼠发布了新的文献求助10
2秒前
巴黎的防发布了新的文献求助10
2秒前
难过的映菱完成签到,获得积分10
3秒前
淡定身影发布了新的文献求助10
3秒前
nmt发布了新的文献求助10
3秒前
3秒前
3秒前
Fang完成签到,获得积分10
3秒前
cc发布了新的文献求助10
3秒前
4秒前
自尊的腐都胖子完成签到,获得积分10
4秒前
李雯雯完成签到,获得积分10
4秒前
Rocky_Qi发布了新的文献求助10
4秒前
是苗苗丫发布了新的文献求助10
4秒前
纯真寻冬发布了新的文献求助10
4秒前
6秒前
6秒前
Akim应助123采纳,获得10
7秒前
猫毛发布了新的文献求助30
7秒前
7秒前
打打应助Sandy采纳,获得10
7秒前
七少爷完成签到,获得积分10
7秒前
Fang发布了新的文献求助10
8秒前
华仔应助yuehui采纳,获得10
8秒前
9秒前
乌龙茶ICE完成签到,获得积分10
9秒前
9秒前
bioai发布了新的文献求助10
9秒前
ggjy完成签到,获得积分10
9秒前
T_完成签到,获得积分10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516