Valorization of tomato processing by-products: Predictive modeling and optimization for ultrasound-assisted lycopene extraction

番茄红素 萃取(化学) 响应面法 相关系数 人工神经网络 产量(工程) 决定系数 生物系统 化学 类胡萝卜素 计算机科学 色谱法 材料科学 人工智能 食品科学 机器学习 生物 冶金
作者
Stefan Kuvendžiev,Kiril Lisichkov,Mirko Marinkovski,Martin Stojchevski,Darko Dimitrovski,Viktor Andonovikj
出处
期刊:Ultrasonics Sonochemistry [Elsevier BV]
卷期号:110: 107055-107055 被引量:7
标识
DOI:10.1016/j.ultsonch.2024.107055
摘要

Lycopene is a carotenoid highly valuable to the food, pharmaceutical, dye, and cosmetic industries, present in ripe tomatoes and other fruits with a distinctive red color. The main source of lycopene is tomato crops. This bioactive component can be successfully isolated from tomato processing waste, commonly called tomato pomace, mostly made from tomato skins, seeds, and some residual tomato tissue. The main investigative focus in this work was the application of green engineering principles in each stage of the optimized ultrasound-assisted extraction (UAE) of enzymatically treated tomato skins to obtain functional extracts rich in lycopene. The experimental plan was designed to determine the influence of studied operating parameters: enzymatic reaction time (60, 120, and 180 min), extraction time (0, 5, 10, 15, 30, 60, and 120 min), and temperature (25, 35 and 45 ℃) on lycopene yield. Process optimization was performed based on the yield of lycopene [1018, 1067, and 1120 mg/kg] achieved at optimal operating conditions. An artificial neural network (ANN) model was developed and trained for predictive modeling of the closed extraction system, with operating parameters used as input neurons and experimentally obtained values for lycopene content defined as the output neural layer. Applied ANN architecture provided a high correlation of experimental output with ANN-generated data (R=0.99914) with a model deviation error for the entire data set of RMSE=5.3 mg/kg. The k-Nearest Neighbor algorithm was introduced to predict lycopene yield using experimental key features: operating temperature, extraction time, and time of enzymatic treatment, split into training and testing sets with an 85/15 ratio. The model interpretation was conducted through the SHAP (SHapley Additive exPlanations) methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助怕孤单的思雁采纳,获得30
刚刚
甜甜的静柏完成签到 ,获得积分10
刚刚
1秒前
Neul发布了新的文献求助30
2秒前
3秒前
独特忆南完成签到,获得积分10
4秒前
轻松笙发布了新的文献求助10
4秒前
高贵的迎蕾完成签到,获得积分10
5秒前
喵喵描白完成签到,获得积分10
6秒前
6秒前
科研通AI5应助虚幻心锁采纳,获得10
7秒前
7秒前
云不暇完成签到 ,获得积分10
7秒前
abc发布了新的文献求助10
7秒前
莫道桑榆完成签到,获得积分10
8秒前
开心谷秋完成签到,获得积分10
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
Dean应助科研通管家采纳,获得50
9秒前
Hello应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
jin完成签到,获得积分10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
正己化人应助科研通管家采纳,获得20
9秒前
小青椒应助科研通管家采纳,获得20
9秒前
9秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
Ava应助科研通管家采纳,获得10
10秒前
大胆胡萝卜完成签到,获得积分10
11秒前
11秒前
KK发布了新的文献求助10
12秒前
iorpi完成签到,获得积分10
12秒前
12秒前
俊鱼完成签到,获得积分10
12秒前
Zhangll完成签到,获得积分10
13秒前
粗犷的迎松完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910822
求助须知:如何正确求助?哪些是违规求助? 4186436
关于积分的说明 12999794
捐赠科研通 3954003
什么是DOI,文献DOI怎么找? 2168246
邀请新用户注册赠送积分活动 1186614
关于科研通互助平台的介绍 1093909