Organic light-emitting diodes (OLEDs) for low energy transfer and double emission, but the current methods for regulating ESIPT processes are mostly solvent and substituent effects. Here, utilizing the density theory functional (DFT) and time-dependent density functional theory (TD-DFT) methods, the ESIPT process controlled by an external electric field (EEF) is proposed, and the changes in photophysical properties of 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol (PyHBT) are investigated. Structural parameter variations and IR vibrational spectra measure the prerequisite for the ESIPT process, namely, intramolecular hydrogen bond (IHB) strength, and the scanned potential energy curves (PECs) demonstrate that the ESIPT process of PyHBT is harder to execute as the positive EEF increases, and the opposite is true for the negative EEF. The absorption and fluorescence spectra show shifts under the distinct EEFs, and even the emission wavelength reaches the short-wave near-infrared (SW-NIR) region (780-1100 nm), such as 815.2 nm for a positive EEF of + 30 × 10