Combined structure-based virtual screening and machine learning approach for the identification of potential dual inhibitors of ACC and DGAT2

虚拟筛选 对偶(语法数字) 鉴定(生物学) 计算机科学 人工智能 计算生物学 机器学习 化学 药物发现 生物 生物化学 哲学 植物 语言学
作者
Liangying Deng,Yanfeng Liu,Nana Mi,Feng Ding,Shu-Ran Zhang,Lixing Wu,Huangjin Tong
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:278: 134363-134363 被引量:1
标识
DOI:10.1016/j.ijbiomac.2024.134363
摘要

Acetyl-coenzyme A carboxylase (ACC) and diacylglycerol acyltransferase 2 (DGAT2) are recognized as potential therapeutic targets for nonalcoholic fatty liver disease (NAFLD). Inhibitors targeting ACC and DGAT2 have exhibited the capacity to reduce hepatic fat in individuals afflicted with NAFLD. However, there are no reports of dual inhibitors targeting ACC and DGAT2 for the treatment of NAFLD. Here, we aimed to identify potential dual inhibitors of ACC and DGAT2 using an integrated in silico approach. Machine learning-based virtual screening of commercial molecule databases yielded 395,729 hits, which were subsequently subjected to molecular docking aimed at both the ACC and DGAT2 binding sites. Based on the docking scores, nine compounds exhibited robust interactions with critical residues of both ACC and DGAT2, displaying favorable drug-like features. Molecular dynamics simulations (MDs) unveiled the substantial impact of these compounds on the conformational dynamics of the proteins. Furthermore, binding free energy assessments highlighted the notable binding affinities of specific compounds (V003-8107, G340-0503, Y200-1700, E999-1199, V003-6429, V025-4981, V006-1474, V025-0499, and V021-8916) to ACC and DGAT2. The compounds proposed in this study, identified using a multifaceted computational strategy, warrant experimental validation as potential dual inhibitors of ACC and DGAT2, with implications for the future development of novel drugs targeting NAFLD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SciGPT应助别叫我吃饭饭饭采纳,获得10
1秒前
2秒前
giotto完成签到,获得积分10
3秒前
CipherSage应助临猗下大雨采纳,获得10
3秒前
Venus发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
Sen完成签到,获得积分10
7秒前
8秒前
8秒前
Mao完成签到,获得积分10
8秒前
wanci应助寒冷不凡采纳,获得10
9秒前
乐乐应助哦哦采纳,获得10
9秒前
亭瞳发布了新的文献求助10
9秒前
星辰大海应助mariawang采纳,获得30
9秒前
tianliyan完成签到,获得积分10
10秒前
10秒前
喜东东发布了新的文献求助10
10秒前
zzyyyl完成签到,获得积分10
10秒前
科研通AI6应助Venus采纳,获得10
11秒前
浮游应助欢喜的白开水采纳,获得10
11秒前
11秒前
11秒前
别叫我吃饭饭饭完成签到,获得积分10
12秒前
无所吊谓发布了新的文献求助10
12秒前
12秒前
qkm123完成签到,获得积分10
13秒前
顺利秋灵发布了新的文献求助10
13秒前
tianliyan发布了新的文献求助10
13秒前
1234567完成签到,获得积分20
14秒前
15秒前
15秒前
Mao发布了新的文献求助30
15秒前
所所应助Sophia采纳,获得30
15秒前
16秒前
16秒前
Sun完成签到 ,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5195129
求助须知:如何正确求助?哪些是违规求助? 4377276
关于积分的说明 13631828
捐赠科研通 4232475
什么是DOI,文献DOI怎么找? 2321675
邀请新用户注册赠送积分活动 1319787
关于科研通互助平台的介绍 1270209