催化作用
碳酸酐酶
化学
碳纳米管
碳酸酐酶Ⅱ
化学工程
膜
动力学
聚电解质
纳米技术
组合化学
有机化学
材料科学
酶
聚合物
生物化学
物理
工程类
量子力学
作者
Minji Kim,Hyesung Lee,Ye-Won Kim,Min‐Chul Kim,Sang‐Yup Lee
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2024-08-23
卷期号:12 (36): 13415-13426
标识
DOI:10.1021/acssuschemeng.4c00659
摘要
Promotion of the conversion of CO2 into HCO3– is necessary for the efficient sequestration of CO2 into metal carbonate minerals, a promising CO2 utilization strategy. Carbonic anhydrase (CA), a ubiquitous enzyme, exhibits high activity in CO2 hydration and suffers from inherent instability as a biological disadvantage. Consequently, there is a demand for a CA-mimetic catalyst that is stable at high temperatures and can be easily prepared. In this study, we have developed a new CA-mimetic nanotube (CMNT) catalyst, demonstrating remarkable catalytic activity in CO2 hydration. The CMNT catalyst is easily prepared by the layer-by-layer (LbL) method, which involves the sequential infusion of polyelectrolyte and polypeptide solutions into a track-etched polymeric membrane. Multiple catalytic Zn-histidyl imidazole complexes were built on the inner channel of nanotubes, on which CO2 hydration takes place. CMNT follows Michaelis–Menten kinetics with a catalytic activity (kcat/KM) of 8.2 M–1 s–1 at pH 7.5, comparable to those of other CA-mimetic catalysts. Remarkably, CMNT maintains its catalytic activity at 70 °C, a temperature that destabilizes CA. Sequestration of CO2 into calcites was demonstrated with extensive characterization of CMNT and catalytic activity. Moreover, the CMNT-integrated membranes could be applied to continuous CO2 hydration. This work underlines the straightforward preparation of a CA-mimetic catalyst using an established technique, offering the potential for future modification or incorporation of additional catalytic functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI