An investigation of generative AI in the classroom and its implications for university policy

生成语法 高等教育 数学教育 心理学 计算机科学 经济 人工智能 经济增长
作者
Eric J. Hamerman,Anubhav Aggarwal,Chrissy M. Martins
出处
期刊:Quality Assurance in Education [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/qae-08-2024-0149
摘要

Purpose The emergence of widely available Generative Artificial Intelligence (GenAI) tools, such as ChatGPT, presents both opportunities and threats for higher education. This study aims to investigate the factors that influence students’ current use of GenAI and students’ perceptions of how GenAI can facilitate learning, as well as informs recommendations for institutional policies related to GenAI. Design/methodology/approach A mixed-method approach was used. A survey of undergraduate business students was followed by a case study that required students to use GenAI as part of a homework assignment and then reflect on their learning experience. Findings Students used GenAI more frequently when they perceived that it helped their learning outcomes and when it was perceived as a social norm. Conversely, the perception that GenAI was cheating reduced its usage. Male (vs female) students used GenAI more frequently. Students preferred institutional policies that allowed the use of GenAI but also set clear boundaries for its use. They reported that the assignment that required the use of GenAI enhanced their learning experience. Practical implications Results from the survey and case study imply that institutions should set policies establishing clear boundaries for the use of GenAI while encouraging and training faculty to incorporate GenAI into classroom assignments. Doing so can facilitate student learning and train students on an important technology that prepares them for the workforce. Originality/value This study provides insight into students’ usage of GenAI, explores factors that predict its usage, provides policy recommendations for educational institutions and offers a template for incorporating GenAI into classroom assignments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝沛儿完成签到,获得积分10
刚刚
1秒前
任性的不愁应助myjf采纳,获得10
1秒前
2秒前
余海川完成签到,获得积分10
2秒前
3秒前
NPC应助安生生采纳,获得20
4秒前
斯文败类应助panda采纳,获得10
4秒前
顺利毕业完成签到,获得积分10
4秒前
yejing发布了新的文献求助20
5秒前
5秒前
良辰应助秀丽映阳采纳,获得10
5秒前
夜莺夜莺完成签到,获得积分10
5秒前
四件发布了新的文献求助10
6秒前
NexusExplorer应助西贝子子采纳,获得10
7秒前
T拐拐发布了新的文献求助10
7秒前
lalala发布了新的文献求助10
7秒前
key完成签到,获得积分10
9秒前
Marianna完成签到,获得积分20
9秒前
10秒前
10秒前
zhouyao完成签到,获得积分10
10秒前
可爱的函函应助kaixin采纳,获得10
10秒前
喝杯水再走完成签到,获得积分10
11秒前
wanci应助大袁采纳,获得10
12秒前
12秒前
13秒前
13秒前
13秒前
温婉的笑寒应助ljq采纳,获得10
13秒前
小毕可乐完成签到,获得积分10
13秒前
香蕉觅云应助zqsgddw采纳,获得10
13秒前
传奇3应助拾柒采纳,获得10
14秒前
完美世界应助朵颜三卫采纳,获得10
14秒前
14秒前
乐观的冰珍完成签到,获得积分20
14秒前
木木发布了新的文献求助10
14秒前
爆米花应助Steven采纳,获得10
14秒前
15秒前
wanci应助悦悦采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648