亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on Machine Learning-Based Method for Predicting Industrial Park Electric Vehicle Charging Load

电动汽车 工业园区 汽车工程 计算机科学 工程类 地理 物理 量子力学 功率(物理) 考古
作者
Shiying Ma,Ning Jin,Ning Mao,Jie Liu,Ruifeng Shi
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (17): 7258-7258
标识
DOI:10.3390/su16177258
摘要

To achieve global sustainability goals and meet the urgent demands of carbon neutrality, China is continuously transforming its energy structure. In this process, electric vehicles (EVs) are playing an increasingly important role in energy transition and have become one of the primary user groups in the electricity market. Traditional load prediction algorithms have difficulty in constructing mathematical models for predicting the charging load of electric vehicles, which is characterized by high randomness, high volatility, and high spatial heterogeneity. Moreover, the predicted results often exhibit a certain degree of lag. Therefore, this study approaches the analysis from two perspectives: the overall industrial park and individual charging stations. By analyzing specific load data, the overall framework for the training dataset was established. Additionally, based on the evaluation system proposed in this study and utilizing both Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) algorithms, a framework for machine learning-based load prediction methods was constructed to forecast electric vehicle charging loads in industrial parks. Through a case analysis, it was found that the proposed solution for the short-term prediction of the charging load in industrial park electric vehicles can achieve accurate and stable forecasting results. Specifically, in terms of data prediction for normal working days and statutory holidays, the Long Short-Term Memory (LSTM) algorithm demonstrated high accuracy, with R2 coefficients of 0.9283 and 0.9154, respectively, indicating the good interpretability of the model. In terms of weekend holiday data prediction, the Multilayer Perceptron (MLP) algorithm achieved an R2 coefficient of as high as 0.9586, significantly surpassing the LSTM algorithm’s value of 0.9415, demonstrating superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
张小美发布了新的文献求助10
9秒前
半城微凉应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
tishe7完成签到,获得积分10
11秒前
feifei发布了新的文献求助10
14秒前
所所应助张小美采纳,获得10
17秒前
乐乐应助qls123采纳,获得10
36秒前
qls123完成签到,获得积分10
43秒前
44秒前
48秒前
53秒前
岸在海的深处完成签到 ,获得积分10
53秒前
57秒前
58秒前
qls123发布了新的文献求助10
1分钟前
1分钟前
千山暮雪发布了新的文献求助10
1分钟前
xx完成签到 ,获得积分10
1分钟前
捉迷藏完成签到,获得积分0
1分钟前
guoze完成签到,获得积分10
1分钟前
NexusExplorer应助千山暮雪采纳,获得30
1分钟前
wsw驳回了orixero应助
1分钟前
1分钟前
Djnsbj发布了新的文献求助10
1分钟前
dopamine完成签到,获得积分10
1分钟前
半城微凉应助科研通管家采纳,获得10
2分钟前
半城微凉应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
孜然味的拜拜肉完成签到,获得积分10
2分钟前
2分钟前
wsw发布了新的文献求助10
2分钟前
yi完成签到 ,获得积分10
2分钟前
3分钟前
张小美发布了新的文献求助10
3分钟前
张小美完成签到,获得积分10
3分钟前
xixi关注了科研通微信公众号
3分钟前
清爽的机器猫完成签到 ,获得积分10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155601
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214