Research on Machine Learning-Based Method for Predicting Industrial Park Electric Vehicle Charging Load

电动汽车 工业园区 汽车工程 计算机科学 工程类 地理 物理 量子力学 功率(物理) 考古
作者
Shiying Ma,Ning Jin,Ning Mao,Jie Liu,Ruifeng Shi
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (17): 7258-7258
标识
DOI:10.3390/su16177258
摘要

To achieve global sustainability goals and meet the urgent demands of carbon neutrality, China is continuously transforming its energy structure. In this process, electric vehicles (EVs) are playing an increasingly important role in energy transition and have become one of the primary user groups in the electricity market. Traditional load prediction algorithms have difficulty in constructing mathematical models for predicting the charging load of electric vehicles, which is characterized by high randomness, high volatility, and high spatial heterogeneity. Moreover, the predicted results often exhibit a certain degree of lag. Therefore, this study approaches the analysis from two perspectives: the overall industrial park and individual charging stations. By analyzing specific load data, the overall framework for the training dataset was established. Additionally, based on the evaluation system proposed in this study and utilizing both Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) algorithms, a framework for machine learning-based load prediction methods was constructed to forecast electric vehicle charging loads in industrial parks. Through a case analysis, it was found that the proposed solution for the short-term prediction of the charging load in industrial park electric vehicles can achieve accurate and stable forecasting results. Specifically, in terms of data prediction for normal working days and statutory holidays, the Long Short-Term Memory (LSTM) algorithm demonstrated high accuracy, with R2 coefficients of 0.9283 and 0.9154, respectively, indicating the good interpretability of the model. In terms of weekend holiday data prediction, the Multilayer Perceptron (MLP) algorithm achieved an R2 coefficient of as high as 0.9586, significantly surpassing the LSTM algorithm’s value of 0.9415, demonstrating superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助紫杉罗罗采纳,获得10
1秒前
1秒前
2秒前
3秒前
3秒前
SYBH完成签到,获得积分10
3秒前
4秒前
4秒前
SDLC发布了新的文献求助10
5秒前
科目三应助Annie900530采纳,获得20
5秒前
量子星尘发布了新的文献求助10
5秒前
温洋驳回了Hello应助
5秒前
5秒前
顺心寄容完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
秩枊完成签到,获得积分10
6秒前
lalahei完成签到,获得积分10
6秒前
桐桐应助霸子采纳,获得10
7秒前
秋qiu发布了新的文献求助10
7秒前
科研通AI6应助整齐的幻柏采纳,获得10
8秒前
科目三应助maclogos采纳,获得20
8秒前
小帅发布了新的文献求助10
8秒前
wsq发布了新的文献求助10
8秒前
Triones完成签到,获得积分10
8秒前
coilamdau完成签到,获得积分10
8秒前
9秒前
9秒前
朱sq完成签到,获得积分10
9秒前
王浩完成签到,获得积分10
9秒前
zh20130发布了新的文献求助10
10秒前
舒服的醉卉完成签到,获得积分10
10秒前
YY完成签到,获得积分20
11秒前
圆圆发布了新的文献求助10
11秒前
tyhmugua发布了新的文献求助10
11秒前
11秒前
11秒前
所所应助宠仙采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599128
求助须知:如何正确求助?哪些是违规求助? 4009886
关于积分的说明 12413724
捐赠科研通 3689510
什么是DOI,文献DOI怎么找? 2033887
邀请新用户注册赠送积分活动 1067051
科研通“疑难数据库(出版商)”最低求助积分说明 952137