Research on Machine Learning-Based Method for Predicting Industrial Park Electric Vehicle Charging Load

电动汽车 工业园区 汽车工程 计算机科学 工程类 地理 物理 量子力学 功率(物理) 考古
作者
Shiying Ma,Ning Jin,Ning Mao,Jie Liu,Ruifeng Shi
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (17): 7258-7258
标识
DOI:10.3390/su16177258
摘要

To achieve global sustainability goals and meet the urgent demands of carbon neutrality, China is continuously transforming its energy structure. In this process, electric vehicles (EVs) are playing an increasingly important role in energy transition and have become one of the primary user groups in the electricity market. Traditional load prediction algorithms have difficulty in constructing mathematical models for predicting the charging load of electric vehicles, which is characterized by high randomness, high volatility, and high spatial heterogeneity. Moreover, the predicted results often exhibit a certain degree of lag. Therefore, this study approaches the analysis from two perspectives: the overall industrial park and individual charging stations. By analyzing specific load data, the overall framework for the training dataset was established. Additionally, based on the evaluation system proposed in this study and utilizing both Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) algorithms, a framework for machine learning-based load prediction methods was constructed to forecast electric vehicle charging loads in industrial parks. Through a case analysis, it was found that the proposed solution for the short-term prediction of the charging load in industrial park electric vehicles can achieve accurate and stable forecasting results. Specifically, in terms of data prediction for normal working days and statutory holidays, the Long Short-Term Memory (LSTM) algorithm demonstrated high accuracy, with R2 coefficients of 0.9283 and 0.9154, respectively, indicating the good interpretability of the model. In terms of weekend holiday data prediction, the Multilayer Perceptron (MLP) algorithm achieved an R2 coefficient of as high as 0.9586, significantly surpassing the LSTM algorithm’s value of 0.9415, demonstrating superior performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LongHua发布了新的文献求助10
3秒前
缪道之完成签到 ,获得积分10
3秒前
4秒前
木偶完成签到,获得积分10
4秒前
小猫完成签到 ,获得积分10
4秒前
huayi完成签到,获得积分10
6秒前
典雅胜发布了新的文献求助10
7秒前
姚怜南完成签到,获得积分10
7秒前
Norah完成签到,获得积分10
8秒前
8秒前
饱满的毛巾完成签到,获得积分10
9秒前
玖月完成签到 ,获得积分0
10秒前
10秒前
11秒前
潇潇完成签到,获得积分10
12秒前
pluto完成签到,获得积分0
12秒前
14秒前
支雨泽发布了新的文献求助10
15秒前
烟花应助TulIP采纳,获得10
16秒前
辛勤的小熊猫完成签到,获得积分10
16秒前
粥粥粥完成签到,获得积分20
17秒前
queer完成签到,获得积分10
17秒前
天行马完成签到,获得积分10
17秒前
juphen2发布了新的文献求助10
18秒前
芜湖起飞完成签到 ,获得积分10
19秒前
wang完成签到,获得积分10
20秒前
20秒前
zhangj696完成签到,获得积分10
21秒前
Xavier完成签到,获得积分10
22秒前
洁净的黑米完成签到,获得积分10
23秒前
圈圈应助科研通管家采纳,获得10
23秒前
xz应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
香蕉诗蕊应助科研通管家采纳,获得10
24秒前
24秒前
香蕉诗蕊应助科研通管家采纳,获得10
24秒前
smottom应助科研通管家采纳,获得10
24秒前
iVANPENNY应助科研通管家采纳,获得10
24秒前
老刀完成签到,获得积分10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688574
关于积分的说明 14854759
捐赠科研通 4693983
什么是DOI,文献DOI怎么找? 2540888
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806