已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on Machine Learning-Based Method for Predicting Industrial Park Electric Vehicle Charging Load

电动汽车 工业园区 汽车工程 计算机科学 工程类 地理 物理 量子力学 功率(物理) 考古
作者
Shiying Ma,Ning Jin,Ning Mao,Jie Liu,Ruifeng Shi
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (17): 7258-7258
标识
DOI:10.3390/su16177258
摘要

To achieve global sustainability goals and meet the urgent demands of carbon neutrality, China is continuously transforming its energy structure. In this process, electric vehicles (EVs) are playing an increasingly important role in energy transition and have become one of the primary user groups in the electricity market. Traditional load prediction algorithms have difficulty in constructing mathematical models for predicting the charging load of electric vehicles, which is characterized by high randomness, high volatility, and high spatial heterogeneity. Moreover, the predicted results often exhibit a certain degree of lag. Therefore, this study approaches the analysis from two perspectives: the overall industrial park and individual charging stations. By analyzing specific load data, the overall framework for the training dataset was established. Additionally, based on the evaluation system proposed in this study and utilizing both Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) algorithms, a framework for machine learning-based load prediction methods was constructed to forecast electric vehicle charging loads in industrial parks. Through a case analysis, it was found that the proposed solution for the short-term prediction of the charging load in industrial park electric vehicles can achieve accurate and stable forecasting results. Specifically, in terms of data prediction for normal working days and statutory holidays, the Long Short-Term Memory (LSTM) algorithm demonstrated high accuracy, with R2 coefficients of 0.9283 and 0.9154, respectively, indicating the good interpretability of the model. In terms of weekend holiday data prediction, the Multilayer Perceptron (MLP) algorithm achieved an R2 coefficient of as high as 0.9586, significantly surpassing the LSTM algorithm’s value of 0.9415, demonstrating superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
条鱼关注了科研通微信公众号
刚刚
刚刚
Double发布了新的文献求助10
1秒前
朝朝暮夕发布了新的文献求助10
1秒前
顾矜应助俏皮的老城采纳,获得10
2秒前
富贵发布了新的文献求助10
3秒前
abab完成签到 ,获得积分10
5秒前
HUSHIYI完成签到 ,获得积分20
6秒前
轻松的万天完成签到 ,获得积分10
6秒前
6秒前
俭朴的跳跳糖完成签到 ,获得积分10
8秒前
楠小土完成签到,获得积分10
11秒前
糖炒李子完成签到 ,获得积分10
12秒前
领导范儿应助诺颜爱采纳,获得10
13秒前
桐桐应助985博士采纳,获得10
14秒前
小梦完成签到,获得积分10
14秒前
浮游应助喜悦采纳,获得10
15秒前
彭于晏应助喜悦采纳,获得10
15秒前
rwq完成签到 ,获得积分10
16秒前
17秒前
張医铄完成签到,获得积分10
17秒前
18秒前
风趣之云完成签到,获得积分10
21秒前
喜悦完成签到,获得积分20
21秒前
23秒前
23秒前
FashionBoy应助小池同学采纳,获得10
23秒前
房房不慌完成签到 ,获得积分10
24秒前
25秒前
猪猪hero发布了新的文献求助10
25秒前
烟酒牲完成签到,获得积分10
26秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得10
28秒前
坎德拉发布了新的文献求助10
28秒前
28秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431945
求助须知:如何正确求助?哪些是违规求助? 4544768
关于积分的说明 14193772
捐赠科研通 4463994
什么是DOI,文献DOI怎么找? 2446920
邀请新用户注册赠送积分活动 1438241
关于科研通互助平台的介绍 1415027