Research on Machine Learning-Based Method for Predicting Industrial Park Electric Vehicle Charging Load

电动汽车 工业园区 汽车工程 计算机科学 工程类 地理 物理 量子力学 功率(物理) 考古
作者
Shiying Ma,Ning Jin,Ning Mao,Jie Liu,Ruifeng Shi
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (17): 7258-7258
标识
DOI:10.3390/su16177258
摘要

To achieve global sustainability goals and meet the urgent demands of carbon neutrality, China is continuously transforming its energy structure. In this process, electric vehicles (EVs) are playing an increasingly important role in energy transition and have become one of the primary user groups in the electricity market. Traditional load prediction algorithms have difficulty in constructing mathematical models for predicting the charging load of electric vehicles, which is characterized by high randomness, high volatility, and high spatial heterogeneity. Moreover, the predicted results often exhibit a certain degree of lag. Therefore, this study approaches the analysis from two perspectives: the overall industrial park and individual charging stations. By analyzing specific load data, the overall framework for the training dataset was established. Additionally, based on the evaluation system proposed in this study and utilizing both Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) algorithms, a framework for machine learning-based load prediction methods was constructed to forecast electric vehicle charging loads in industrial parks. Through a case analysis, it was found that the proposed solution for the short-term prediction of the charging load in industrial park electric vehicles can achieve accurate and stable forecasting results. Specifically, in terms of data prediction for normal working days and statutory holidays, the Long Short-Term Memory (LSTM) algorithm demonstrated high accuracy, with R2 coefficients of 0.9283 and 0.9154, respectively, indicating the good interpretability of the model. In terms of weekend holiday data prediction, the Multilayer Perceptron (MLP) algorithm achieved an R2 coefficient of as high as 0.9586, significantly surpassing the LSTM algorithm’s value of 0.9415, demonstrating superior performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gallop完成签到,获得积分10
4秒前
Brooks完成签到,获得积分10
14秒前
dlzheng完成签到 ,获得积分10
14秒前
Efficient完成签到 ,获得积分10
16秒前
李正纲完成签到 ,获得积分10
16秒前
啦啦啦啦啦完成签到 ,获得积分10
17秒前
22秒前
拙青完成签到,获得积分10
22秒前
神勇的天问完成签到 ,获得积分10
31秒前
萧水白完成签到,获得积分10
31秒前
gszy1975完成签到,获得积分10
32秒前
马儿饿了要吃草完成签到,获得积分10
34秒前
mmm4完成签到 ,获得积分10
52秒前
Lucas应助科研通管家采纳,获得10
52秒前
江江完成签到 ,获得积分10
55秒前
Liuruijia完成签到 ,获得积分10
57秒前
1分钟前
阿布与小佛完成签到 ,获得积分10
1分钟前
迷人冥完成签到 ,获得积分10
1分钟前
Omni发布了新的文献求助10
1分钟前
留猪完成签到,获得积分10
1分钟前
自然若完成签到,获得积分10
1分钟前
愉快的丹彤完成签到 ,获得积分10
1分钟前
包包琪完成签到 ,获得积分10
1分钟前
OSASACB完成签到 ,获得积分10
1分钟前
鱼鱼鱼鱼完成签到 ,获得积分10
1分钟前
修兮完成签到 ,获得积分10
1分钟前
吾系渣渣辉完成签到 ,获得积分10
1分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
1分钟前
AU完成签到 ,获得积分10
1分钟前
称心芷天完成签到 ,获得积分10
1分钟前
zbb123完成签到 ,获得积分10
1分钟前
sci完成签到 ,获得积分10
1分钟前
谦让汝燕完成签到,获得积分10
1分钟前
桥豆麻袋完成签到,获得积分10
1分钟前
wp4455777完成签到,获得积分10
1分钟前
ZS完成签到,获得积分10
1分钟前
xcwy完成签到,获得积分10
1分钟前
tt完成签到 ,获得积分10
1分钟前
鲤鱼灵阳完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689432
捐赠科研通 4591885
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463118