Research on Machine Learning-Based Method for Predicting Industrial Park Electric Vehicle Charging Load

电动汽车 工业园区 汽车工程 计算机科学 工程类 地理 物理 量子力学 功率(物理) 考古
作者
Shiying Ma,Ning Jin,Ning Mao,Jie Liu,Ruifeng Shi
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (17): 7258-7258
标识
DOI:10.3390/su16177258
摘要

To achieve global sustainability goals and meet the urgent demands of carbon neutrality, China is continuously transforming its energy structure. In this process, electric vehicles (EVs) are playing an increasingly important role in energy transition and have become one of the primary user groups in the electricity market. Traditional load prediction algorithms have difficulty in constructing mathematical models for predicting the charging load of electric vehicles, which is characterized by high randomness, high volatility, and high spatial heterogeneity. Moreover, the predicted results often exhibit a certain degree of lag. Therefore, this study approaches the analysis from two perspectives: the overall industrial park and individual charging stations. By analyzing specific load data, the overall framework for the training dataset was established. Additionally, based on the evaluation system proposed in this study and utilizing both Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) algorithms, a framework for machine learning-based load prediction methods was constructed to forecast electric vehicle charging loads in industrial parks. Through a case analysis, it was found that the proposed solution for the short-term prediction of the charging load in industrial park electric vehicles can achieve accurate and stable forecasting results. Specifically, in terms of data prediction for normal working days and statutory holidays, the Long Short-Term Memory (LSTM) algorithm demonstrated high accuracy, with R2 coefficients of 0.9283 and 0.9154, respectively, indicating the good interpretability of the model. In terms of weekend holiday data prediction, the Multilayer Perceptron (MLP) algorithm achieved an R2 coefficient of as high as 0.9586, significantly surpassing the LSTM algorithm’s value of 0.9415, demonstrating superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
成就映秋完成签到,获得积分10
2秒前
3秒前
wyw完成签到 ,获得积分10
3秒前
77完成签到,获得积分10
4秒前
科研通AI6应助复杂冬日采纳,获得10
4秒前
完美世界应助复杂冬日采纳,获得10
4秒前
5秒前
xxx发布了新的文献求助10
5秒前
6秒前
6秒前
民网完成签到,获得积分20
7秒前
9秒前
kangshuai完成签到,获得积分10
9秒前
Tonson发布了新的文献求助10
10秒前
科研通AI5应助鲤鱼越越采纳,获得10
10秒前
赘婿应助凹凸先森采纳,获得10
11秒前
无宇伦比完成签到,获得积分10
12秒前
常淼淼发布了新的文献求助30
12秒前
12秒前
民网发布了新的文献求助10
13秒前
复杂从梦完成签到,获得积分10
14秒前
zxdnbb完成签到,获得积分20
14秒前
拳头完成签到,获得积分20
15秒前
zyz完成签到,获得积分20
16秒前
无宇伦比发布了新的文献求助10
16秒前
小黄完成签到 ,获得积分10
16秒前
土豆丝炒姜丝完成签到,获得积分10
17秒前
18秒前
Tonson完成签到,获得积分10
19秒前
xin发布了新的文献求助10
20秒前
SciGPT应助常淼淼采纳,获得10
20秒前
精明的寒天完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助150
22秒前
乐乐应助小熊童话书采纳,获得10
22秒前
22秒前
22秒前
xiaoda发布了新的文献求助10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131793
求助须知:如何正确求助?哪些是违规求助? 4333420
关于积分的说明 13500679
捐赠科研通 4170416
什么是DOI,文献DOI怎么找? 2286270
邀请新用户注册赠送积分活动 1287168
关于科研通互助平台的介绍 1228229