亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on Machine Learning-Based Method for Predicting Industrial Park Electric Vehicle Charging Load

电动汽车 工业园区 汽车工程 计算机科学 工程类 地理 物理 量子力学 功率(物理) 考古
作者
Shiying Ma,Ning Jin,Ning Mao,Jie Liu,Ruifeng Shi
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (17): 7258-7258
标识
DOI:10.3390/su16177258
摘要

To achieve global sustainability goals and meet the urgent demands of carbon neutrality, China is continuously transforming its energy structure. In this process, electric vehicles (EVs) are playing an increasingly important role in energy transition and have become one of the primary user groups in the electricity market. Traditional load prediction algorithms have difficulty in constructing mathematical models for predicting the charging load of electric vehicles, which is characterized by high randomness, high volatility, and high spatial heterogeneity. Moreover, the predicted results often exhibit a certain degree of lag. Therefore, this study approaches the analysis from two perspectives: the overall industrial park and individual charging stations. By analyzing specific load data, the overall framework for the training dataset was established. Additionally, based on the evaluation system proposed in this study and utilizing both Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) algorithms, a framework for machine learning-based load prediction methods was constructed to forecast electric vehicle charging loads in industrial parks. Through a case analysis, it was found that the proposed solution for the short-term prediction of the charging load in industrial park electric vehicles can achieve accurate and stable forecasting results. Specifically, in terms of data prediction for normal working days and statutory holidays, the Long Short-Term Memory (LSTM) algorithm demonstrated high accuracy, with R2 coefficients of 0.9283 and 0.9154, respectively, indicating the good interpretability of the model. In terms of weekend holiday data prediction, the Multilayer Perceptron (MLP) algorithm achieved an R2 coefficient of as high as 0.9586, significantly surpassing the LSTM algorithm’s value of 0.9415, demonstrating superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
超级小卢发布了新的文献求助10
9秒前
Stamina678完成签到,获得积分10
11秒前
超级小卢完成签到,获得积分10
15秒前
魏欣娜发布了新的文献求助10
27秒前
una完成签到 ,获得积分10
29秒前
张123完成签到,获得积分10
31秒前
Hello应助WanchengHu采纳,获得10
33秒前
36秒前
ataybabdallah发布了新的文献求助10
40秒前
43秒前
49秒前
情怀应助魏欣娜采纳,获得10
52秒前
ataybabdallah发布了新的文献求助30
56秒前
赘婿应助阿尔芒果皮采纳,获得10
59秒前
1分钟前
1分钟前
ataybabdallah发布了新的文献求助10
1分钟前
WanchengHu发布了新的文献求助10
1分钟前
qiii发布了新的文献求助100
1分钟前
我是老大应助WanchengHu采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ataybabdallah发布了新的文献求助10
1分钟前
2分钟前
魏欣娜发布了新的文献求助10
2分钟前
LLL发布了新的文献求助10
2分钟前
drjyang完成签到,获得积分10
2分钟前
ataybabdallah完成签到,获得积分10
2分钟前
Haha完成签到,获得积分10
2分钟前
maher完成签到,获得积分10
2分钟前
JamesPei应助Haha采纳,获得10
2分钟前
LLL完成签到,获得积分10
2分钟前
所所应助魏欣娜采纳,获得10
2分钟前
不去明知山完成签到 ,获得积分10
2分钟前
3分钟前
WanchengHu发布了新的文献求助10
3分钟前
3分钟前
123发布了新的文献求助10
3分钟前
3分钟前
Haha发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476333
求助须知:如何正确求助?哪些是违规求助? 4578009
关于积分的说明 14363307
捐赠科研通 4505917
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430196