Research on Machine Learning-Based Method for Predicting Industrial Park Electric Vehicle Charging Load

电动汽车 工业园区 汽车工程 计算机科学 工程类 地理 物理 量子力学 功率(物理) 考古
作者
Shiying Ma,Ning Jin,Ning Mao,Jie Liu,Ruifeng Shi
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (17): 7258-7258
标识
DOI:10.3390/su16177258
摘要

To achieve global sustainability goals and meet the urgent demands of carbon neutrality, China is continuously transforming its energy structure. In this process, electric vehicles (EVs) are playing an increasingly important role in energy transition and have become one of the primary user groups in the electricity market. Traditional load prediction algorithms have difficulty in constructing mathematical models for predicting the charging load of electric vehicles, which is characterized by high randomness, high volatility, and high spatial heterogeneity. Moreover, the predicted results often exhibit a certain degree of lag. Therefore, this study approaches the analysis from two perspectives: the overall industrial park and individual charging stations. By analyzing specific load data, the overall framework for the training dataset was established. Additionally, based on the evaluation system proposed in this study and utilizing both Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) algorithms, a framework for machine learning-based load prediction methods was constructed to forecast electric vehicle charging loads in industrial parks. Through a case analysis, it was found that the proposed solution for the short-term prediction of the charging load in industrial park electric vehicles can achieve accurate and stable forecasting results. Specifically, in terms of data prediction for normal working days and statutory holidays, the Long Short-Term Memory (LSTM) algorithm demonstrated high accuracy, with R2 coefficients of 0.9283 and 0.9154, respectively, indicating the good interpretability of the model. In terms of weekend holiday data prediction, the Multilayer Perceptron (MLP) algorithm achieved an R2 coefficient of as high as 0.9586, significantly surpassing the LSTM algorithm’s value of 0.9415, demonstrating superior performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大古发布了新的文献求助10
1秒前
赘婿应助朴素代秋采纳,获得10
1秒前
doing发布了新的文献求助10
1秒前
小吉麻麻发布了新的文献求助10
1秒前
123关注了科研通微信公众号
2秒前
GG应助认真的不评采纳,获得40
2秒前
情怀应助WWK13采纳,获得10
2秒前
2秒前
yike发布了新的文献求助10
3秒前
3秒前
碧海流花完成签到,获得积分10
3秒前
赘婿应助小yo超爱学采纳,获得10
3秒前
今后应助杜薇薇采纳,获得10
3秒前
张皓123完成签到,获得积分10
3秒前
charlie完成签到,获得积分10
3秒前
Ade阿德完成签到,获得积分10
4秒前
4秒前
4秒前
脑洞疼应助狗大王采纳,获得30
5秒前
漠之梦完成签到,获得积分10
5秒前
张雯雯发布了新的文献求助10
6秒前
6秒前
科研通AI6应助B站萧亚轩采纳,获得10
6秒前
英姑应助B站萧亚轩采纳,获得10
7秒前
科研通AI6应助B站萧亚轩采纳,获得10
7秒前
万信心完成签到,获得积分10
7秒前
完美世界应助B站萧亚轩采纳,获得10
7秒前
科研通AI6应助B站萧亚轩采纳,获得10
7秒前
科研通AI6应助B站萧亚轩采纳,获得10
7秒前
科研通AI6应助B站萧亚轩采纳,获得30
7秒前
共享精神应助B站萧亚轩采纳,获得10
7秒前
研友_VZG7GZ应助B站萧亚轩采纳,获得10
7秒前
英俊的铭应助Annie采纳,获得10
7秒前
独特天问完成签到,获得积分10
7秒前
Ksharp10完成签到,获得积分10
7秒前
852应助ly采纳,获得10
7秒前
7秒前
SciGPT应助Key采纳,获得10
8秒前
小王完成签到 ,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731