Research on Machine Learning-Based Method for Predicting Industrial Park Electric Vehicle Charging Load

电动汽车 工业园区 汽车工程 计算机科学 工程类 地理 物理 量子力学 功率(物理) 考古
作者
Shiying Ma,Ning Jin,Ning Mao,Jie Liu,Ruifeng Shi
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (17): 7258-7258
标识
DOI:10.3390/su16177258
摘要

To achieve global sustainability goals and meet the urgent demands of carbon neutrality, China is continuously transforming its energy structure. In this process, electric vehicles (EVs) are playing an increasingly important role in energy transition and have become one of the primary user groups in the electricity market. Traditional load prediction algorithms have difficulty in constructing mathematical models for predicting the charging load of electric vehicles, which is characterized by high randomness, high volatility, and high spatial heterogeneity. Moreover, the predicted results often exhibit a certain degree of lag. Therefore, this study approaches the analysis from two perspectives: the overall industrial park and individual charging stations. By analyzing specific load data, the overall framework for the training dataset was established. Additionally, based on the evaluation system proposed in this study and utilizing both Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) algorithms, a framework for machine learning-based load prediction methods was constructed to forecast electric vehicle charging loads in industrial parks. Through a case analysis, it was found that the proposed solution for the short-term prediction of the charging load in industrial park electric vehicles can achieve accurate and stable forecasting results. Specifically, in terms of data prediction for normal working days and statutory holidays, the Long Short-Term Memory (LSTM) algorithm demonstrated high accuracy, with R2 coefficients of 0.9283 and 0.9154, respectively, indicating the good interpretability of the model. In terms of weekend holiday data prediction, the Multilayer Perceptron (MLP) algorithm achieved an R2 coefficient of as high as 0.9586, significantly surpassing the LSTM algorithm’s value of 0.9415, demonstrating superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自己的样子好好看完成签到,获得积分10
刚刚
huangsi完成签到,获得积分10
2秒前
xdc完成签到,获得积分20
3秒前
软曲奇完成签到,获得积分10
3秒前
3秒前
4秒前
垃圾桶完成签到,获得积分10
5秒前
5秒前
5秒前
Guidong_Wang发布了新的文献求助10
5秒前
5秒前
小猪坨发布了新的文献求助30
8秒前
猹尔斯完成签到,获得积分10
8秒前
猫一样的完成签到,获得积分10
8秒前
黄臻发布了新的文献求助10
9秒前
MaoSen发布了新的文献求助10
9秒前
李爱国应助xt_489采纳,获得10
10秒前
wangayting发布了新的文献求助30
10秒前
gkads应助甜甜的静柏采纳,获得10
12秒前
Guidong_Wang完成签到,获得积分10
12秒前
丫头完成签到,获得积分10
13秒前
苏卿发布了新的文献求助200
13秒前
Blaseaka完成签到 ,获得积分0
13秒前
tangyong完成签到,获得积分0
16秒前
稳重翅膀发布了新的文献求助10
16秒前
乐乐应助摇匀采纳,获得30
17秒前
123完成签到 ,获得积分10
18秒前
完美世界应助清风拂明月采纳,获得10
20秒前
puppy完成签到,获得积分10
20秒前
哐哧哐哧薯完成签到 ,获得积分10
21秒前
BBA完成签到 ,获得积分10
21秒前
21秒前
善学以致用应助lin采纳,获得10
21秒前
鲤鱼一一完成签到,获得积分10
26秒前
qianyuan发布了新的文献求助10
26秒前
一笑而过完成签到 ,获得积分10
28秒前
29秒前
隐形曼青应助MaoSen采纳,获得10
29秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296703
求助须知:如何正确求助?哪些是违规求助? 4445819
关于积分的说明 13837462
捐赠科研通 4330808
什么是DOI,文献DOI怎么找? 2377291
邀请新用户注册赠送积分活动 1372608
关于科研通互助平台的介绍 1338052