亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-adaptive selection graph pooling based fault diagnosis method under few samples and noisy environment

联营 选择(遗传算法) 计算机科学 人工智能 图形 断层(地质) 机器学习 模式识别(心理学) 生物 理论计算机科学 古生物学
作者
Haobin Ke,Zhiwen Chen,Xinyu Fan,Chao Yang,Hongwei Wang
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:154: 299-310
标识
DOI:10.1016/j.isatra.2024.08.019
摘要

Neural network (NN)-based methods are extensively used for intelligent fault diagnosis in industrial systems. Nevertheless, due to the limited availability of faulty samples and the presence of noise interference, most existing NN-based methods perform limited diagnosis performance. In response to these challenges, a self-adaptive selection graph pooling method is proposed. Firstly, graph encoders with sharing parameters are designed to extract local structure-feature information (SFI) of multiple sensor-wise sub-graphs. Then, the temporal continuity of the SFI is maintained through time-by-time concatenation, resulting in a global sensor graph and reducing the dependency on data volume from the perspective of adding prior knowledge. Subsequently, leveraging a self-adaptive node selection mechanism, the noise interference of redundant and noisy sensor-wise nodes in the graph is alleviated, allowing the networks to concentrate on the fault-attention nodes. Finally, the local max pooling and global mean pooling of the node-selection graph are incorporated in the readout module to get the multi-scale graph features, which serve as input to a multi-layer perceptron for fault diagnosis. Two experimental studies involving different mechanical and electrical systems demonstrate that the proposed method not only achieves superior diagnosis performance with limited data, but also maintains strong anti-interference ability in noisy environments. Additionally, it exhibits good interpretability through the proposed self-adaptive node selection mechanism and visualization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷苗条应助NinG采纳,获得10
2秒前
Zjc0913发布了新的文献求助10
13秒前
14秒前
27秒前
赘婿应助爱听歌书芹采纳,获得10
47秒前
天天快乐应助爱听歌书芹采纳,获得10
47秒前
58秒前
1分钟前
1分钟前
碳土不凡完成签到 ,获得积分10
1分钟前
传奇完成签到 ,获得积分10
1分钟前
Yucorn完成签到 ,获得积分10
1分钟前
loewy完成签到,获得积分10
1分钟前
不秃燃的小老弟完成签到 ,获得积分10
1分钟前
shiyang2014完成签到,获得积分10
2分钟前
花花公子完成签到,获得积分10
2分钟前
sola完成签到 ,获得积分10
2分钟前
懒羊羊大王完成签到 ,获得积分10
2分钟前
2分钟前
欢呼的寻双完成签到,获得积分10
2分钟前
Mollyshimmer完成签到 ,获得积分10
2分钟前
SCIfafafafa发布了新的文献求助10
3分钟前
duxiao完成签到 ,获得积分10
3分钟前
情怀应助SCIfafafafa采纳,获得10
3分钟前
小六子完成签到,获得积分10
3分钟前
Lucas应助duxiao采纳,获得10
4分钟前
Aaron完成签到 ,获得积分0
4分钟前
在水一方应助科研通管家采纳,获得30
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
4分钟前
Jasper应助hongtao采纳,获得10
4分钟前
5分钟前
JamesPei应助Fung采纳,获得10
5分钟前
5分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
5分钟前
6分钟前
qiu发布了新的文献求助10
6分钟前
顾矜应助狂发文章采纳,获得10
6分钟前
6分钟前
Djnsbj发布了新的文献求助10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155650
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214