Self-adaptive selection graph pooling based fault diagnosis method under few samples and noisy environment

联营 选择(遗传算法) 计算机科学 人工智能 图形 断层(地质) 机器学习 模式识别(心理学) 生物 理论计算机科学 古生物学
作者
Haobin Ke,Zhiwen Chen,Xinyu Fan,Chao Yang,Hongwei Wang
出处
期刊:Isa Transactions [Elsevier]
卷期号:154: 299-310
标识
DOI:10.1016/j.isatra.2024.08.019
摘要

Neural network (NN)-based methods are extensively used for intelligent fault diagnosis in industrial systems. Nevertheless, due to the limited availability of faulty samples and the presence of noise interference, most existing NN-based methods perform limited diagnosis performance. In response to these challenges, a self-adaptive selection graph pooling method is proposed. Firstly, graph encoders with sharing parameters are designed to extract local structure-feature information (SFI) of multiple sensor-wise sub-graphs. Then, the temporal continuity of the SFI is maintained through time-by-time concatenation, resulting in a global sensor graph and reducing the dependency on data volume from the perspective of adding prior knowledge. Subsequently, leveraging a self-adaptive node selection mechanism, the noise interference of redundant and noisy sensor-wise nodes in the graph is alleviated, allowing the networks to concentrate on the fault-attention nodes. Finally, the local max pooling and global mean pooling of the node-selection graph are incorporated in the readout module to get the multi-scale graph features, which serve as input to a multi-layer perceptron for fault diagnosis. Two experimental studies involving different mechanical and electrical systems demonstrate that the proposed method not only achieves superior diagnosis performance with limited data, but also maintains strong anti-interference ability in noisy environments. Additionally, it exhibits good interpretability through the proposed self-adaptive node selection mechanism and visualization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的士萧完成签到 ,获得积分10
刚刚
NexusExplorer应助王宇杰采纳,获得10
刚刚
刚刚
jiaying_Z发布了新的文献求助10
1秒前
小胡同学发布了新的文献求助10
1秒前
2秒前
2秒前
陈述完成签到,获得积分20
2秒前
Jasper应助搞怪哑铃采纳,获得10
3秒前
林子青完成签到,获得积分10
4秒前
浔城游侠完成签到,获得积分10
4秒前
田様应助六七七采纳,获得10
4秒前
4秒前
Nuyoah发布了新的文献求助10
4秒前
精明唯雪发布了新的文献求助10
4秒前
5秒前
6秒前
ZJU完成签到,获得积分10
6秒前
Jasper应助司空豁采纳,获得10
7秒前
妞妞发布了新的文献求助10
7秒前
懒惰扼杀激情完成签到 ,获得积分10
8秒前
爆米花应助王饱饱采纳,获得10
8秒前
一方通行发布了新的文献求助10
8秒前
Gang完成签到,获得积分10
9秒前
蓝荆完成签到,获得积分10
9秒前
是是是WQ完成签到 ,获得积分0
10秒前
闪电小超人完成签到,获得积分10
10秒前
怡然嚣完成签到,获得积分20
10秒前
11秒前
思源应助我是美丽采纳,获得10
11秒前
11秒前
dajunL关注了科研通微信公众号
12秒前
生动谷蓝完成签到,获得积分10
12秒前
ntrip发布了新的文献求助10
13秒前
14秒前
苏栀完成签到,获得积分10
14秒前
大尾巴白完成签到,获得积分10
14秒前
14秒前
SciGPT应助小白采纳,获得10
15秒前
老牛完成签到 ,获得积分10
16秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
Development and Industrialization of Stereoregular Polynorbornenes 500
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3418479
求助须知:如何正确求助?哪些是违规求助? 3020002
关于积分的说明 8890091
捐赠科研通 2707376
什么是DOI,文献DOI怎么找? 1484773
科研通“疑难数据库(出版商)”最低求助积分说明 686142
邀请新用户注册赠送积分活动 681347