Multi-visual-inertial system: Analysis, calibration, and estimation

校准 计算机科学 人工智能 惯性参考系 计算机视觉 数学 统计 量子力学 物理
作者
Yulin Yang,Patrick Geneva,Guoquan Huang
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241245726
摘要

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and/or rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with inertial intrinsics—termed ACI 3 —to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs and/or gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain—no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韶华完成签到,获得积分10
刚刚
zcx发布了新的文献求助10
2秒前
研友_VZG7GZ应助栗树采纳,获得30
2秒前
4秒前
4秒前
zsy发布了新的文献求助10
4秒前
5秒前
领导范儿应助坚强馒头采纳,获得10
5秒前
充电宝应助张宇龙采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
脑洞疼应助科研通管家采纳,获得20
6秒前
Owen应助科研通管家采纳,获得10
6秒前
共享精神应助陈祖冰采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
烟花应助卡尔文采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
云1发布了新的文献求助10
8秒前
浮游应助红苹果采纳,获得10
8秒前
8秒前
chen7完成签到,获得积分10
9秒前
li8888lili8888完成签到 ,获得积分10
9秒前
bean发布了新的文献求助10
9秒前
大模型应助hnwang98采纳,获得10
10秒前
jml完成签到,获得积分10
10秒前
隐形曼青应助斯文的文轩采纳,获得10
10秒前
Lee完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514198
求助须知:如何正确求助?哪些是违规求助? 4608120
关于积分的说明 14508732
捐赠科研通 4543952
什么是DOI,文献DOI怎么找? 2489834
邀请新用户注册赠送积分活动 1471765
关于科研通互助平台的介绍 1443710