Multi-visual-inertial system: Analysis, calibration, and estimation

校准 计算机科学 人工智能 惯性参考系 计算机视觉 数学 统计 量子力学 物理
作者
Yulin Yang,Patrick Geneva,Guoquan Huang
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241245726
摘要

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and/or rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with inertial intrinsics—termed ACI 3 —to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs and/or gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain—no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈M雯完成签到 ,获得积分10
刚刚
momo妈咪完成签到 ,获得积分10
2秒前
janice116688完成签到,获得积分10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
leiluke应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Wang发布了新的文献求助10
4秒前
英俊雅柏完成签到,获得积分10
7秒前
饮千欲完成签到 ,获得积分10
8秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
9秒前
xinghe123完成签到,获得积分10
10秒前
浮游应助kantanna采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
双碳小王子完成签到,获得积分10
14秒前
15秒前
Simpson完成签到 ,获得积分0
16秒前
DongQiu1993发布了新的文献求助10
16秒前
天天快乐应助畅快城采纳,获得10
18秒前
小董完成签到,获得积分10
19秒前
bigger.b完成签到,获得积分10
19秒前
舒心无剑完成签到 ,获得积分10
19秒前
mucheng发布了新的文献求助10
20秒前
rora完成签到 ,获得积分10
20秒前
qqq完成签到 ,获得积分10
21秒前
Piana完成签到 ,获得积分10
21秒前
善良的冰绿完成签到,获得积分10
23秒前
雨濛完成签到,获得积分10
23秒前
24秒前
23xyke完成签到,获得积分10
25秒前
辛勤的泽洋完成签到 ,获得积分10
26秒前
饼饼完成签到,获得积分10
27秒前
ableyy完成签到 ,获得积分10
27秒前
28秒前
28秒前
29秒前
29秒前
upup完成签到 ,获得积分10
32秒前
松柏完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645110
求助须知:如何正确求助?哪些是违规求助? 4767789
关于积分的说明 15026408
捐赠科研通 4803525
什么是DOI,文献DOI怎么找? 2568373
邀请新用户注册赠送积分活动 1525699
关于科研通互助平台的介绍 1485325