Multi-visual-inertial system: Analysis, calibration, and estimation

校准 计算机科学 人工智能 惯性参考系 计算机视觉 数学 统计 量子力学 物理
作者
Yulin Yang,Patrick Geneva,Guoquan Huang
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241245726
摘要

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and/or rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with inertial intrinsics—termed ACI 3 —to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs and/or gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain—no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
平淡依玉发布了新的文献求助10
1秒前
genuine完成签到,获得积分10
1秒前
1秒前
2秒前
jingjing完成签到,获得积分10
2秒前
2秒前
mrpy应助养乐多采纳,获得10
2秒前
3秒前
4秒前
共享精神应助Certainty橙子采纳,获得10
4秒前
算命先生发布了新的文献求助10
4秒前
4秒前
XiaTong完成签到 ,获得积分10
5秒前
5秒前
cy完成签到,获得积分10
5秒前
5秒前
nannan关注了科研通微信公众号
5秒前
6秒前
努力搬砖努力干完成签到,获得积分10
6秒前
7秒前
脑洞疼应助HH采纳,获得10
7秒前
天天快乐应助Aurora.H采纳,获得10
7秒前
珍妮发布了新的文献求助10
7秒前
小二郎应助AY采纳,获得10
7秒前
怕黑海冬发布了新的文献求助10
7秒前
超人无敌完成签到,获得积分10
7秒前
8秒前
麦麦发布了新的文献求助10
8秒前
思源应助蓓蓓0303采纳,获得10
9秒前
haha发布了新的文献求助10
9秒前
小蘑菇应助李李李er采纳,获得10
9秒前
9秒前
kian发布了新的文献求助10
9秒前
孙笑川发布了新的文献求助10
10秒前
得己发布了新的文献求助10
10秒前
ABLAT发布了新的文献求助10
10秒前
研友_莫笑旋完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853