Multi-visual-inertial system: Analysis, calibration, and estimation

校准 计算机科学 人工智能 惯性参考系 计算机视觉 数学 统计 量子力学 物理
作者
Yulin Yang,Patrick Geneva,Guoquan Huang
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241245726
摘要

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and/or rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with inertial intrinsics—termed ACI 3 —to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs and/or gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain—no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负数完成签到,获得积分10
1秒前
快到碗里来完成签到,获得积分10
2秒前
esdese完成签到,获得积分10
3秒前
4秒前
大狒狒发布了新的文献求助10
10秒前
空白完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
张昌炜完成签到 ,获得积分10
17秒前
大狒狒完成签到,获得积分10
17秒前
jscr完成签到,获得积分10
18秒前
桂花载酒少年游完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
如意的玉米完成签到,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
科研小白完成签到,获得积分20
23秒前
Ava应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
蓉蓉完成签到 ,获得积分10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
sunyz应助科研通管家采纳,获得10
24秒前
求助人员应助科研通管家采纳,获得30
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
24秒前
学术小白完成签到,获得积分10
26秒前
高大的鸽子完成签到 ,获得积分10
27秒前
30秒前
好运设计完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
31秒前
温婉的香氛完成签到 ,获得积分10
32秒前
esdese发布了新的文献求助10
37秒前
超越俗尘完成签到,获得积分10
37秒前
明时完成签到,获得积分10
38秒前
CMUSK完成签到,获得积分10
40秒前
小核桃完成签到 ,获得积分10
43秒前
勤恳的嚓茶完成签到,获得积分10
43秒前
45秒前
Freddy完成签到 ,获得积分10
45秒前
LIKUN完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986