亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-visual-inertial system: Analysis, calibration, and estimation

校准 计算机科学 人工智能 惯性参考系 计算机视觉 数学 统计 量子力学 物理
作者
Yulin Yang,Patrick Geneva,Guoquan Huang
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241245726
摘要

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and/or rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with inertial intrinsics—termed ACI 3 —to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs and/or gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain—no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fantianhui完成签到 ,获得积分10
1秒前
LiShan完成签到 ,获得积分10
1秒前
wyx发布了新的文献求助10
4秒前
乐乐应助默默采纳,获得10
11秒前
11秒前
Jasper应助挺帅一男的采纳,获得10
12秒前
Bressanone完成签到,获得积分10
16秒前
biophilia发布了新的文献求助10
16秒前
啊z应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
瀚子完成签到,获得积分10
22秒前
23秒前
默默发布了新的文献求助10
24秒前
守一完成签到,获得积分10
24秒前
蓝莓小蛋糕完成签到 ,获得积分10
25秒前
28秒前
逆光完成签到 ,获得积分10
30秒前
36秒前
38秒前
Aurora发布了新的文献求助10
40秒前
江氏巨颏虎完成签到,获得积分10
42秒前
彭于晏应助ohhhhhoho采纳,获得10
42秒前
43秒前
Aurora完成签到,获得积分10
45秒前
LONG发布了新的文献求助10
49秒前
挺帅一男的完成签到,获得积分10
50秒前
52秒前
biophilia发布了新的文献求助10
56秒前
谨慎的曼安完成签到 ,获得积分10
58秒前
草莓发布了新的文献求助10
1分钟前
俊逸沛菡完成签到 ,获得积分10
1分钟前
咸鱼完成签到 ,获得积分10
1分钟前
Lucas应助白易采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714199
求助须知:如何正确求助?哪些是违规求助? 5221497
关于积分的说明 15272903
捐赠科研通 4865707
什么是DOI,文献DOI怎么找? 2612304
邀请新用户注册赠送积分活动 1562442
关于科研通互助平台的介绍 1519639