Multi-visual-inertial system: Analysis, calibration, and estimation

校准 计算机科学 人工智能 惯性参考系 计算机视觉 数学 统计 量子力学 物理
作者
Yulin Yang,Patrick Geneva,Guoquan Huang
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241245726
摘要

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and/or rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with inertial intrinsics—termed ACI 3 —to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs and/or gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain—no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小罗黑的发布了新的文献求助10
1秒前
2秒前
明昼完成签到,获得积分10
2秒前
2秒前
2秒前
多巴胺完成签到,获得积分10
2秒前
3秒前
微笑迎曼发布了新的文献求助30
3秒前
六六发布了新的文献求助10
3秒前
哈哈哈发布了新的文献求助10
3秒前
杨锐发布了新的文献求助10
3秒前
Hello应助oo采纳,获得10
3秒前
4秒前
4秒前
洛城l发布了新的文献求助10
4秒前
4秒前
科目三应助三块石头采纳,获得10
4秒前
5秒前
所所应助Wnnnn采纳,获得10
5秒前
科研通AI6应助姜萌萌采纳,获得10
5秒前
zar完成签到,获得积分10
7秒前
7秒前
8秒前
宋温暖应助wuran采纳,获得10
8秒前
8秒前
Schmidt发布了新的文献求助10
8秒前
科研通AI6应助chunyeliangchuan采纳,获得10
8秒前
9秒前
小坚果发布了新的文献求助10
9秒前
9秒前
天天快乐应助哈哈哈采纳,获得10
9秒前
10秒前
在远方完成签到,获得积分10
10秒前
科研棒棒哒完成签到 ,获得积分10
12秒前
111发布了新的文献求助10
13秒前
丘比特应助fugdu采纳,获得50
13秒前
13秒前
八百标兵完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342