Multi-visual-inertial system: Analysis, calibration, and estimation

校准 计算机科学 人工智能 惯性参考系 计算机视觉 数学 统计 量子力学 物理
作者
Yulin Yang,Patrick Geneva,Guoquan Huang
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241245726
摘要

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and/or rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with inertial intrinsics—termed ACI 3 —to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs and/or gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain—no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
南湖完成签到 ,获得积分10
1秒前
1秒前
杨lan完成签到 ,获得积分10
3秒前
3秒前
hhy完成签到,获得积分10
4秒前
paopao完成签到,获得积分10
4秒前
5秒前
6秒前
欣慰冬亦发布了新的文献求助10
6秒前
文文发布了新的文献求助10
6秒前
王滕发布了新的文献求助10
7秒前
小小完成签到,获得积分10
8秒前
13940519973发布了新的文献求助30
8秒前
丸子博士发布了新的文献求助10
10秒前
夏姬宁静发布了新的文献求助10
10秒前
522完成签到,获得积分10
11秒前
11秒前
浮游应助爱咋咋地采纳,获得10
11秒前
球状闪电完成签到,获得积分10
11秒前
FashionBoy应助单薄的钢笔采纳,获得10
11秒前
joey106发布了新的文献求助10
12秒前
LTT完成签到,获得积分20
13秒前
烟花应助王滕采纳,获得10
14秒前
16秒前
mf发布了新的文献求助10
17秒前
Mei发布了新的文献求助10
17秒前
latata完成签到,获得积分10
18秒前
赘婿应助dudulu采纳,获得10
19秒前
妖魔鬼怪快离开完成签到,获得积分10
19秒前
mf完成签到 ,获得积分10
20秒前
虚幻远侵发布了新的文献求助10
22秒前
浮游应助王滕采纳,获得10
22秒前
jiangzhi发布了新的文献求助30
22秒前
欣慰冬亦完成签到,获得积分10
22秒前
23秒前
阿猫完成签到,获得积分10
23秒前
汉堡包应助LTT采纳,获得10
24秒前
小宅女完成签到 ,获得积分10
24秒前
天天快乐应助joey106采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565868
求助须知:如何正确求助?哪些是违规求助? 4650808
关于积分的说明 14693385
捐赠科研通 4592912
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463329