Multi-visual-inertial system: Analysis, calibration, and estimation

校准 计算机科学 人工智能 惯性参考系 计算机视觉 数学 统计 量子力学 物理
作者
Yulin Yang,Patrick Geneva,Guoquan Huang
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241245726
摘要

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and/or rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with inertial intrinsics—termed ACI 3 —to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs and/or gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain—no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助刚睡醒采纳,获得10
刚刚
刚刚
老北京发布了新的文献求助10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
今后应助科研通管家采纳,获得10
1秒前
Cleo应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
坚果应助科研通管家采纳,获得10
1秒前
可爱草丛应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
芬达发布了新的文献求助10
1秒前
wanci应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
坚果应助科研通管家采纳,获得10
2秒前
Cleo应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
可爱草丛应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
laber应助科研通管家采纳,获得50
3秒前
Akim应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
坚果应助科研通管家采纳,获得10
3秒前
xzy998应助科研通管家采纳,获得10
3秒前
Zx_1993应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841