亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-visual-inertial system: Analysis, calibration, and estimation

校准 计算机科学 人工智能 惯性参考系 计算机视觉 数学 统计 量子力学 物理
作者
Yulin Yang,Patrick Geneva,Guoquan Huang
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241245726
摘要

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and/or rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with inertial intrinsics—termed ACI 3 —to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs and/or gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain—no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助称心嫣娆采纳,获得10
1秒前
1秒前
迷你的以珊完成签到,获得积分10
2秒前
尘曦发布了新的文献求助10
3秒前
4秒前
张子捷发布了新的文献求助10
4秒前
默默完成签到 ,获得积分10
9秒前
10秒前
Stefan完成签到,获得积分20
11秒前
QWQ完成签到,获得积分10
12秒前
12秒前
枝头树上的布谷鸟完成签到 ,获得积分10
13秒前
Stefan发布了新的文献求助10
14秒前
dreamboat发布了新的文献求助30
19秒前
21秒前
27秒前
JamesPei应助尘曦采纳,获得10
30秒前
Wsyyy完成签到 ,获得积分10
32秒前
32秒前
NexusExplorer应助shy采纳,获得10
32秒前
ss完成签到,获得积分20
33秒前
wanci应助11111采纳,获得10
36秒前
ss发布了新的文献求助10
36秒前
max完成签到,获得积分10
37秒前
39秒前
42秒前
忧心的白桃完成签到,获得积分10
42秒前
Tendency完成签到 ,获得积分10
42秒前
嘿嘿应助tt采纳,获得20
42秒前
梦杭完成签到,获得积分10
43秒前
文静的峻熙完成签到,获得积分10
45秒前
shy发布了新的文献求助10
46秒前
王饱饱完成签到 ,获得积分10
47秒前
打打应助科研通管家采纳,获得10
53秒前
Hello应助科研通管家采纳,获得10
53秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
SciGPT应助科研通管家采纳,获得10
54秒前
卡卡应助科研通管家采纳,获得10
54秒前
Criminology34应助科研通管家采纳,获得10
54秒前
Criminology34应助科研通管家采纳,获得10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595641
求助须知:如何正确求助?哪些是违规求助? 4680876
关于积分的说明 14817858
捐赠科研通 4650908
什么是DOI,文献DOI怎么找? 2535516
邀请新用户注册赠送积分活动 1503487
关于科研通互助平台的介绍 1469742