亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bioprinted, spatially defined breast tumor microenvironment models of intratumoral heterogeneity and drug resistance

肿瘤微环境 抗药性 乳腺肿瘤 肿瘤异质性 药品 计算生物学 癌症研究 生物 乳腺癌 医学 肿瘤细胞 药理学 遗传学 癌症
作者
Tianying Yuan,Xihong Fu,Rongcheng Hu,Xiaochun Zheng,Dong Jiang,Lanyu Jing,Xiaying Kuang,Zhongwei Guo,Luo Xu,Yixin Liu,Xuenong Zou,Gary D. Luker,Shengli Mi,Chun Liu,Wei Sun
出处
期刊:Trends in Biotechnology [Elsevier BV]
卷期号:42 (11): 1523-1550 被引量:2
标识
DOI:10.1016/j.tibtech.2024.06.007
摘要

Bioprinted breast tumor microenvironment (TME) models with spatial heterogeneity recaptured a well-defined cancer cell-rich stroma structure. Heterogeneity in angiogenesis and extracellular matrix (ECM) stiffness was found in bioprinted TME models. Intercellular crosstalk was identified in bioprinted TME models, which was associated with tumor angiogenesis and ECM remodeling. Bioprinted TME models demonstrated spatially heterogeneous drug resistance in breast cancer. Cellular, extracellular matrix (ECM), and spatial heterogeneity of tumor microenvironments (TMEs) regulate disease progression and treatment efficacy. Developing in vitro models that recapitulate the TME promises to accelerate studies of tumor biology and identify new targets for therapy. Here, we used extrusion-based, multi-nozzle 3D bioprinting to spatially pattern triple-negative MDA-MB-231 breast cancer cells, endothelial cells (ECs), and human mammary cancer-associated fibroblasts (HMCAFs) with biomimetic ECM inks. Bioprinted models captured key features of the spatial architecture of human breast tumors, including varying-sized dense regions of cancer cells and surrounding microvessel-rich stroma. Angiogenesis and ECM stiffening occurred in the stromal area but not the cancer cell-rich (CCR) regions, mimicking pathological changes in patient samples. Transcriptomic analyses revealed upregulation of angiogenesis-related and ECM remodeling-related signatures in the stroma region and identified potential ligand–receptor (LR) mediators of these processes. Breast cancer cells in distinct parts of the bioprinted TME showed differing sensitivities to chemotherapy, highlighting environmentally mediated drug resistance. In summary, our 3D-bioprinted tumor model will act as a platform to discover integrated functions of the TME in cancer biology and therapy. Cellular, extracellular matrix (ECM), and spatial heterogeneity of tumor microenvironments (TMEs) regulate disease progression and treatment efficacy. Developing in vitro models that recapitulate the TME promises to accelerate studies of tumor biology and identify new targets for therapy. Here, we used extrusion-based, multi-nozzle 3D bioprinting to spatially pattern triple-negative MDA-MB-231 breast cancer cells, endothelial cells (ECs), and human mammary cancer-associated fibroblasts (HMCAFs) with biomimetic ECM inks. Bioprinted models captured key features of the spatial architecture of human breast tumors, including varying-sized dense regions of cancer cells and surrounding microvessel-rich stroma. Angiogenesis and ECM stiffening occurred in the stromal area but not the cancer cell-rich (CCR) regions, mimicking pathological changes in patient samples. Transcriptomic analyses revealed upregulation of angiogenesis-related and ECM remodeling-related signatures in the stroma region and identified potential ligand–receptor (LR) mediators of these processes. Breast cancer cells in distinct parts of the bioprinted TME showed differing sensitivities to chemotherapy, highlighting environmentally mediated drug resistance. In summary, our 3D-bioprinted tumor model will act as a platform to discover integrated functions of the TME in cancer biology and therapy. Cellular, extracellular matrix (ECM), and spatial heterogeneity of tumor microenvironments (TMEs) regulate disease progression and treatment efficacy. Developing in vitro models that recapitulate the TME promises to accelerate studies of tumor biology and identify new targets for therapy. Here, we used extrusion-based, multi-nozzle 3D bioprinting to spatially pattern triple-negative MDA-MB-231 breast cancer cells, endothelial cells (ECs), and human mammary cancer-associated fibroblasts (HMCAFs) with biomimetic ECM inks. Bioprinted models captured key features of the spatial architecture of human breast tumors, including varying-sized dense regions of cancer cells and surrounding microvessel-rich stroma. Angiogenesis and ECM stiffening occurred in the stromal area but not the cancer cell-rich (CCR) regions, mimicking pathological changes in patient samples. Transcriptomic analyses revealed upregulation of angiogenesis-related and ECM remodeling-related signatures in the stroma region and identified potential ligand–receptor (LR) mediators of these processes. Breast cancer cells in distinct parts of the bioprinted TME showed differing sensitivities to chemotherapy, highlighting environmentally mediated drug resistance. In summary, our 3D-bioprinted tumor model will act as a platform to discover integrated functions of the TME in cancer biology and therapy. Cellular, extracellular matrix (ECM), and spatial heterogeneity of tumor microenvironments (TMEs) regulate disease progression and treatment efficacy. Developing in vitro models that recapitulate the TME promises to accelerate studies of tumor biology and identify new targets for therapy. Here, we used extrusion-based, multi-nozzle 3D bioprinting to spatially pattern triple-negative MDA-MB-231 breast cancer cells, endothelial cells (ECs), and human mammary cancer-associated fibroblasts (HMCAFs) with biomimetic ECM inks. Bioprinted models captured key features of the spatial architecture of human breast tumors, including varying-sized dense regions of cancer cells and surrounding microvessel-rich stroma. Angiogenesis and ECM stiffening occurred in the stromal area but not the cancer cell-rich (CCR) regions, mimicking pathological changes in patient samples. Transcriptomic analyses revealed upregulation of angiogenesis-related and ECM remodeling-related signatures in the stroma region and identified potential ligand–receptor (LR) mediators of these processes. Breast cancer cells in distinct parts of the bioprinted TME showed differing sensitivities to chemotherapy, highlighting environmentally mediated drug resistance. In summary, our 3D-bioprinted tumor model will act as a platform to discover integrated functions of the TME in cancer biology and therapy. Graphical abstract additive manufacturing technology via spatial and temporal deposition of cells, biomaterials, proteins, and other bioactive substances to fabricate customized 3D tissue-like structures in a controlled layer-by-layer stacking. physiological process by which new blood vessels form from pre-existing vessels. This involves several key steps: activation of ECs, sprouting of new vessel branches, formation of the vessel lumen, and the subsequent maturation and stabilization of the new vessels. formulated material used in 3D bioprinting to produce engineered live tissues, comprising a combination of living cells and biocompatible hydrogels. in vitro 3D miniaturized and self-assembled tumor-mimicking structures that originate from patient-derived tumor cells or genetically programmed induced pluripotent stem cells. complex microporous network of biomacromolecules, including proteins, proteoglycans, glycoproteins, and polysaccharides, providing structural support for surrounding cells and engaging in dynamic interactions with cells. 3D network of polymers with highly porous structures, enabling the absorption and preservation of large amounts of water. Most natural hydrogels are biocompatible. in vivo animal models established by transplanting tumor tissues from a patient into immunodeficient mice. variation in cellular and molecular characteristics that occurs in different regions within a single tumor. Spatial heterogeneity encompasses the diverse distribution of cellular composition, genetic and epigenetic variability, biophysical properties, vascularization, and therapeutic response throughout the TME, affecting cancer progression and drug resistance. complex and dynamic ecosystem surrounding a tumor, comprising diverse populations of cancerous and neighboring non-malignant cells, along with noncellular components, such as ECM constitutions and signaling molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张完成签到 ,获得积分10
3秒前
6秒前
7秒前
Dritsw应助LANER采纳,获得10
10秒前
AAA发布了新的文献求助10
12秒前
jacs111发布了新的文献求助10
21秒前
小胖完成签到 ,获得积分10
34秒前
多情的续完成签到,获得积分10
41秒前
ktw完成签到,获得积分10
45秒前
49秒前
51秒前
呆呆不呆Zz完成签到,获得积分10
57秒前
令宏发布了新的文献求助30
58秒前
59秒前
1分钟前
1分钟前
1分钟前
Dritsw应助罗舒采纳,获得10
1分钟前
JamesPei应助霸气的金鱼采纳,获得10
1分钟前
1分钟前
儒雅老太发布了新的文献求助10
1分钟前
科研通AI5应助feifei采纳,获得10
1分钟前
1分钟前
儒雅老太完成签到,获得积分10
1分钟前
华仔应助Maple采纳,获得10
1分钟前
热情的寄瑶完成签到 ,获得积分10
1分钟前
orixero应助罗舒采纳,获得30
1分钟前
Shun完成签到 ,获得积分10
2分钟前
2分钟前
TXZ06完成签到,获得积分10
2分钟前
xhy完成签到 ,获得积分10
2分钟前
小神仙完成签到 ,获得积分10
2分钟前
Ephemerality完成签到 ,获得积分10
2分钟前
不去明知山完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
罗舒发布了新的文献求助30
2分钟前
2分钟前
eritinn发布了新的文献求助10
2分钟前
eritinn完成签到,获得积分10
3分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965642
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155529
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214