Quantum‐Enhanced K‐Nearest Neighbors for Text Classification: A Hybrid Approach with Unified Circuit and Reduced Quantum Gates

量子 k-最近邻算法 量子电路 计算机科学 物理 量子计算机 人工智能 量子网络 量子力学
作者
Amine Zeguendry,Zahi Jarir,Mohamed Quafafou
出处
期刊:Advanced quantum technologies [Wiley]
卷期号:7 (11)
标识
DOI:10.1002/qute.202400122
摘要

Abstract Text classification, a key process in natural language processing (NLP), relies on the k‐nearest neighbors (KNN) algorithm for its simplicity and effectiveness. Traditional methods often grapple with the high‐dimensional nature of textual data, leading to substantial computational demands. This study introduces a novel classical quantum k‐nearest neighbors (CQKNN) algorithm, which integrates quantum circuits into a conventional machine‐learning framework to enhance computational efficiency and reduce storage requirements. This hybrid approach uses a unified quantum circuit that simplifies multiple similarity calculations through mid‐circuit measurements and qubit reset operations, significantly improving upon traditional multi‐circuit quantum k‐nearest neighbors (QKNN) models. The CQKNN algorithm, tested on datasets such as SMS Spam Collection, Twitter US Airline Sentiment, and IMDB Movie Reviews, not only outperforms classical KNN but also addresses challenges posed by noisy intermediate‐scale quantum (NISQ) devices through advanced error mitigation techniques. This work highlights resource efficiency and reduced gate complexity and demonstrates the practical application of fidelity in quantum similarity calculations, setting new standards for quantum‐enhanced machine learning and advancing current quantum technology capabilities in complex data classification tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CRANE完成签到 ,获得积分10
刚刚
1秒前
深情安青应助孙皮皮采纳,获得10
1秒前
爱听歌澜完成签到,获得积分10
1秒前
2秒前
2秒前
歌于心完成签到,获得积分10
2秒前
Jasper应助林中漫采纳,获得10
3秒前
3秒前
3秒前
云泽发布了新的文献求助10
4秒前
4秒前
小猪发布了新的文献求助10
4秒前
闪闪盼晴完成签到,获得积分20
4秒前
7秒前
7秒前
7秒前
wuqi发布了新的文献求助10
8秒前
9秒前
tooty发布了新的文献求助10
9秒前
melenda发布了新的文献求助10
9秒前
雨眠完成签到,获得积分10
9秒前
10秒前
11秒前
猪猪hero发布了新的文献求助20
11秒前
结实一鸣完成签到 ,获得积分10
11秒前
Hello应助Silence采纳,获得10
11秒前
李li完成签到,获得积分10
11秒前
12秒前
12秒前
初见~发布了新的文献求助30
12秒前
12秒前
13秒前
研友_VZG7GZ应助xueweili采纳,获得10
14秒前
ws发布了新的文献求助10
15秒前
15秒前
情怀应助whl采纳,获得10
16秒前
桐桐应助刻苦蛋挞采纳,获得10
16秒前
17秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475218
求助须知:如何正确求助?哪些是违规求助? 3067269
关于积分的说明 9103369
捐赠科研通 2758656
什么是DOI,文献DOI怎么找? 1513763
邀请新用户注册赠送积分活动 699798
科研通“疑难数据库(出版商)”最低求助积分说明 699160