孕酮受体
免疫组织化学
雌激素受体
雌激素
乳腺癌
癌
病理
鉴别诊断
生物
乳腺癌
医学
内科学
癌症
内分泌学
作者
Zhi Han,Shihong Ding,Baichen Liu,Yandong Tang,Xueshan Qiu,Liang Wang,Huanyu Zhao
标识
DOI:10.1016/j.ajpath.2024.08.011
摘要
In breast carcinoma, invasive ductal carcinoma (IDC) is the most common histopathologic subtype, and ductal carcinoma in situ (DCIS) is a precursor of IDC. They are often concomitant. The immunohistochemical staining of estrogen receptor (ER)/progesterone receptor (PR) in IDC/DCIS on whole slide histopathologic images (WSIs) can predict the prognosis of patients. However, the interobserver variability among pathologists in reading WSIs is inevitable. Thus, artificial intelligence (AI) technology is crucial. Herein, IDC/DCIS detection was conducted by a deep learning approach, including faster region-based convolutional neural network (Faster R-CNN), RetinaNet, single-shot multibox detector 300 (SSD300), you only look once (YOLO) v3, YOLOv5, YOLOv7, YOLOv8, and Swin transformer. Their performance was estimated by mean average precision (mAP) values. Cell recognition and counting were performed using AI technology to evaluate the intensity and proportion of ER/PR-immunostained cancer cells in IDC/DCIS. A three-round ring study (RS) was conducted to assess WSIs. A database for modelling the underlying probability distribution of a data set with labels was established. YOLOv8 exhibits the highest detection performance with an mAP at 0.5 of 0.944 and an mAP at 0.5 to 0.95 of 0.790. With the assistance of YOLOv8, the scoring concordance across all pathologists was boosted to excellent in RS3 (0.970) from moderate in RS1 (0.724) and good in RS2 (0.812). Deep learning detection can be applied in the clinicopathologic field. To facilitate the histopathologic diagnosis of IDC/DCIS and immunostaining scoring of ER/PR, a novel AI architecture and well-organized data set were developed.
科研通智能强力驱动
Strongly Powered by AbleSci AI