钛
材料科学
3d打印
钛合金
合金
扫描电子显微镜
生物医学工程
选择性激光熔化
下颌骨(节肢动物口器)
复合材料
医学
冶金
微观结构
植物
生物
属
作者
Bingjing Zhao,Hong Wang,Changkui Liu,Hua-Wei Liu,Xiaowen Zhao,Zenghui Sun,Hu Min
摘要
Abstract This study is a preliminary investigation exploring the mechanical properties of three‐dimensional (3D)‐printed personalized mesh titanium alloy prostheses and the feasibility of repairing hemi‐mandibular defects. The ANSYS 14.0 software and selective laser melting (SLM) were used to produce personalized mesh titanium alloy scaffolds. Scaffolds printed using different parameters underwent fatigue property tests and scanning electron microscopy (SEM) of the fracture points. Models of hemi‐mandibular defects (encompassing the temporomandibular joint) were created using beagle dogs. Freeze–dried allogeneic mandibles or 3D‐printed personalized mesh titanium alloy prostheses were used for repair. Gross observation, computed tomography (CT), SEM, and histological examinations were used to compare the two repair methods. The prostheses with filament diameters of 0.5 and 0.7 mm could withstand 14,000 times and >600,000 cycles of alternating stresses, respectively. The truss‐structure scaffold with a large aperture and large aperture ratio could withstand roughly 250,000 cycles of alternating forces. The allogeneic mandible graft required intraoperative shaping, while the 3D‐printed mesh titanium alloy prostheses were personalized and did not require intraoperative shaping. The articular disc on the non‐operated sides experienced degenerative changes. No liver and kidney toxicity was observed in the two groups of animals. The 3D‐printed mesh titanium alloy prostheses could effectively restore the shape of the mandibular defect region and reconstruct the temporomandibular joint.
科研通智能强力驱动
Strongly Powered by AbleSci AI