Self-Supervised EEG Representation Learning for Robust Emotion Recognition

计算机科学 情绪识别 脑电图 人工智能 模式识别(心理学) 语音识别 代表(政治) 机器学习 心理学 神经科学 政治 政治学 法学
作者
Huan Liu,Y. Zhang,Xinxian Chen,Dalin Zhang,Rui Li,Tao Qin
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
标识
DOI:10.1145/3674975
摘要

Emotion recognition based on electroencephalography (EEG) is becoming a growing concern of researchers due to its various applications and portable devices. Existing methods are mainly dedicated to EEG feature representation and have made impressive progress. However, the problem of scarce labels restricts their further promotion. In light of this, we propose a self-supervised framework with contrastive learning for robust EEG-based emotion recognition, which can effectively leverage both readily available unlabeled EEG signals and labeled ones to learn highly discriminative EEG features. Firstly, we construct a specific pretext task according to the sequential non-stationarity of emotional EEG signals for contrastive learning, which aims to extract pseudo-label information from all EEG data. Meanwhile, we propose a novel negative segment selection algorithm to reduce the noise of unlabeled data during the contrastive learning process. Secondly, to mitigate the overfitting issue induced by a small number of labeled samples during learning, we originate a loss function with label smoothing regularization that can guide the model to learn generalizable features. Extensive experiments over three benchmark datasets demonstrate the effectiveness and superiority of our model on EEG-based emotion recognition task. Besides, the generalization and robustness of the model have also been proved through sufficient experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助疯狂的咖啡豆采纳,获得10
刚刚
1秒前
1秒前
2秒前
5秒前
丘比特应助薄衫采纳,获得10
5秒前
5秒前
Hello应助CC采纳,获得10
7秒前
CodeCraft应助Richard采纳,获得10
7秒前
7秒前
Naomi-yu发布了新的文献求助10
8秒前
9秒前
灿华完成签到 ,获得积分10
12秒前
充电宝应助林守心采纳,获得10
12秒前
李健的小迷弟应助YYQX采纳,获得30
14秒前
15秒前
滕皓轩发布了新的文献求助30
16秒前
denise完成签到 ,获得积分10
16秒前
18秒前
18秒前
18秒前
20秒前
落后访风完成签到,获得积分10
20秒前
灵巧的忻发布了新的文献求助10
21秒前
21秒前
Richard发布了新的文献求助10
22秒前
22秒前
桐桐应助mawenyu采纳,获得10
22秒前
23秒前
23秒前
YoungDoctor完成签到,获得积分10
25秒前
26秒前
26秒前
27秒前
Ava应助ml采纳,获得30
28秒前
shuai发布了新的文献求助10
29秒前
橘络发布了新的文献求助20
29秒前
31秒前
coilamdau完成签到,获得积分10
32秒前
酷炫蛋挞完成签到 ,获得积分10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443772
求助须知:如何正确求助?哪些是违规求助? 3039907
关于积分的说明 8978775
捐赠科研通 2728422
什么是DOI,文献DOI怎么找? 1496514
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213