A novel remaining useful life prediction method based on gated recurrent unit network optimized by tunicate swarm algorithm for lithium-ion batteries

备份 电池(电) 稳健性(进化) 计算机科学 工程类 算法 可靠性工程 功率(物理) 化学 生物化学 物理 量子力学 数据库 基因
作者
Q. Zhai,Jing Sun,Yunlong Shang,H Wang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
标识
DOI:10.1177/01423312241257305
摘要

Lithium-ion batteries have a wide range of applications in the field of new energy vehicles with advantages including small size, high efficiency, and low pollution. Accurate prediction of the remaining useful life (RUL) of lithium-ion batteries is particularly important to reduce unintended maintenance and avoid safety incidents caused by battery aging. To improve the accuracy and robustness of the RUL prediction of lithium-ion batteries, a prediction method is proposed based on gated recurrent unit (GRU) network optimized by tunicate swarm algorithm (TSA) in this paper. First, the capacity data during the life cycle of the aging battery are extracted as the prediction feature. Then, the GRU network is used to capture the dependencies between degraded capacities for RUL prediction. The main hyperparameters in the GRU network are optimized by the TSA to maximize the prediction performance. Finally, to ensure the validity and generalizability of the proposed RUL prediction method, data sets from University of Maryland, National Aeronautics and Space Administration (NASA), and our own laboratory are selected for validation. The superiority of the proposed method is verified by comparison with other different prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
pinging应助566采纳,获得10
1秒前
乾明少侠完成签到 ,获得积分10
2秒前
2秒前
开心重要完成签到,获得积分10
3秒前
云魂完成签到,获得积分10
3秒前
hxy808完成签到,获得积分10
3秒前
小林太郎应助Young采纳,获得20
3秒前
4秒前
Helical发布了新的文献求助30
4秒前
风趣的天真完成签到,获得积分10
4秒前
虾仁发布了新的文献求助10
4秒前
搜集达人应助gww采纳,获得10
4秒前
SciGPT应助小橙子采纳,获得30
4秒前
跨材料完成签到,获得积分10
5秒前
WxChen发布了新的文献求助10
6秒前
祝顺遂完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
tianle完成签到,获得积分20
7秒前
Seven完成签到,获得积分10
8秒前
8秒前
8秒前
贤惠的迎夏完成签到,获得积分10
9秒前
Hello应助MARS采纳,获得10
9秒前
十里故清欢完成签到,获得积分10
9秒前
虾仁完成签到,获得积分10
9秒前
10秒前
lilac应助啦啦啦采纳,获得10
10秒前
gy关闭了gy文献求助
10秒前
MADKAI发布了新的文献求助10
10秒前
清秀的砖头完成签到,获得积分10
10秒前
小马甲应助等待的乐儿采纳,获得10
10秒前
CodeCraft应助萌萌采纳,获得10
11秒前
11秒前
11秒前
sv发布了新的文献求助10
11秒前
LIU发布了新的文献求助10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759