Exploring the common mechanisms and biomarker ST8SIA4 of atherosclerosis and ankylosing spondylitis through bioinformatics analysis and machine learning

强直性脊柱炎 生物标志物 诊断生物标志物 计算生物学 基因 支持向量机 生物信息学 医学 生物 机器学习 计算机科学 内科学 遗传学
作者
Yirong Ma,Junyu Lai,Qiang Wan,Sun Liqiang,Li Wang,Xingliang Li,Qinhe Zhang,Jianguang Wu
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media]
卷期号:11
标识
DOI:10.3389/fcvm.2024.1421071
摘要

Background Atherosclerosis (AS) is a major contributor to cerebrovascular and cardiovascular events. There is growing evidence that ankylosing spondylitis is closely linked to AS, often co-occurring with it; however, the shared pathogenic mechanisms between the two conditions are not well understood. This study employs bioinformatics approaches to identify common biomarkers and pathways between AS and ankylosing spondylitis. Methods Gene expression datasets for AS (GSE100927, GSE28829, GSE155512) and ankylosing spondylitis (GSE73754, GSE25101) were obtained from the Gene Expression Omnibus (GEO). Differential expression genes (DEGs) and module genes for AS and ankylosing spondylitis were identified using the Limma R package and weighted gene co-expression network analysis (WGCNA) techniques, respectively. The machine learning algorithm SVM-RFE was applied to pinpoint promising biomarkers, which were then validated in terms of their expression levels and diagnostic efficacy in AS and ankylosing spondylitis, using two separate GEO datasets. Furthermore, the interaction of the key biomarker with the immune microenvironment was investigated via the CIBERSORT algorithm, single-cell analysis was used to identify the locations of common diagnostic markers. Results The dataset GSE100927 contains 524 DEGs associated with AS, whereas dataset GSE73754 includes 1,384 genes categorized into modules specific to ankylosing spondylitis. Analysis of these datasets revealed an overlap of 71 genes between the DEGs of AS and the modular genes of ankylosing spondylitis. Utilizing the SVM-RFE algorithm, 15 and 24 central diagnostic genes were identified in datasets GSE100927 and GSE73754, respectively. Further validation of six key genes using external datasets confirmed ST8SIA4 as a common diagnostic marker for both conditions. Notably, ST8SIA4 is upregulated in samples from both diseases. Additionally, ROC analysis confirmed the robust diagnostic utility of ST8SIA4. Moreover, analysis through CIBERSORT suggested an association of the ST8SIA4 gene with the immune microenvironment in both disease contexts. Single-cell analysis revealed that ST8SIA4 is primarily expressed in Macrophages, Monocytes, T cells, and CMPs. Conclusion This study investigates the role of ST8SIA4 as a common diagnostic gene and the involvement of the lysosomal pathway in both AS and ankylosing spondylitis. The findings may yield potential diagnostic biomarkers and offer new insights into the shared pathogenic mechanisms underlying these conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助VictorySaber采纳,获得10
1秒前
cdh1994应助沉静绮彤采纳,获得30
1秒前
1秒前
LC完成签到 ,获得积分10
2秒前
许个愿吧关注了科研通微信公众号
2秒前
狂野东蒽完成签到,获得积分10
2秒前
快乐难敌发布了新的文献求助10
2秒前
芒果味猕猴桃完成签到,获得积分10
3秒前
共享精神应助甜甜圈采纳,获得10
3秒前
huofuman完成签到,获得积分10
4秒前
负责冰烟发布了新的文献求助10
4秒前
htt完成签到,获得积分10
4秒前
feitian201861发布了新的文献求助10
5秒前
5秒前
852应助听话的晓筠采纳,获得10
5秒前
5秒前
Ryan123发布了新的文献求助10
6秒前
dalian完成签到,获得积分10
6秒前
111完成签到,获得积分10
6秒前
青云完成签到,获得积分10
6秒前
CHEN发布了新的文献求助10
6秒前
ning完成签到,获得积分20
7秒前
xiaixax完成签到,获得积分10
7秒前
科研通AI2S应助zz采纳,获得10
7秒前
寒酥完成签到,获得积分10
7秒前
qinswzaiyu完成签到,获得积分10
8秒前
1459完成签到,获得积分10
8秒前
Miranda完成签到,获得积分10
8秒前
充电宝应助欢喜的凡采纳,获得10
9秒前
9秒前
852应助科研小白菜采纳,获得10
9秒前
study666完成签到,获得积分20
9秒前
Wonder完成签到,获得积分10
10秒前
ning发布了新的文献求助20
10秒前
10秒前
liyihua发布了新的文献求助10
10秒前
Lin完成签到 ,获得积分10
11秒前
科研通AI2S应助xinruru采纳,获得10
11秒前
zz完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016449
求助须知:如何正确求助?哪些是违规求助? 3556606
关于积分的说明 11321734
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812434
邀请新用户注册赠送积分活动 887994
科研通“疑难数据库(出版商)”最低求助积分说明 812060