Exploring the common mechanisms and biomarker ST8SIA4 of atherosclerosis and ankylosing spondylitis through bioinformatics analysis and machine learning

强直性脊柱炎 生物标志物 诊断生物标志物 计算生物学 基因 支持向量机 生物信息学 医学 生物 机器学习 计算机科学 内科学 遗传学
作者
Yirong Ma,Junyu Lai,Qiang Wan,Sun Liqiang,Li Wang,Xingliang Li,Qinhe Zhang,Jianguang Wu
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fcvm.2024.1421071
摘要

Background Atherosclerosis (AS) is a major contributor to cerebrovascular and cardiovascular events. There is growing evidence that ankylosing spondylitis is closely linked to AS, often co-occurring with it; however, the shared pathogenic mechanisms between the two conditions are not well understood. This study employs bioinformatics approaches to identify common biomarkers and pathways between AS and ankylosing spondylitis. Methods Gene expression datasets for AS (GSE100927, GSE28829, GSE155512) and ankylosing spondylitis (GSE73754, GSE25101) were obtained from the Gene Expression Omnibus (GEO). Differential expression genes (DEGs) and module genes for AS and ankylosing spondylitis were identified using the Limma R package and weighted gene co-expression network analysis (WGCNA) techniques, respectively. The machine learning algorithm SVM-RFE was applied to pinpoint promising biomarkers, which were then validated in terms of their expression levels and diagnostic efficacy in AS and ankylosing spondylitis, using two separate GEO datasets. Furthermore, the interaction of the key biomarker with the immune microenvironment was investigated via the CIBERSORT algorithm, single-cell analysis was used to identify the locations of common diagnostic markers. Results The dataset GSE100927 contains 524 DEGs associated with AS, whereas dataset GSE73754 includes 1,384 genes categorized into modules specific to ankylosing spondylitis. Analysis of these datasets revealed an overlap of 71 genes between the DEGs of AS and the modular genes of ankylosing spondylitis. Utilizing the SVM-RFE algorithm, 15 and 24 central diagnostic genes were identified in datasets GSE100927 and GSE73754, respectively. Further validation of six key genes using external datasets confirmed ST8SIA4 as a common diagnostic marker for both conditions. Notably, ST8SIA4 is upregulated in samples from both diseases. Additionally, ROC analysis confirmed the robust diagnostic utility of ST8SIA4. Moreover, analysis through CIBERSORT suggested an association of the ST8SIA4 gene with the immune microenvironment in both disease contexts. Single-cell analysis revealed that ST8SIA4 is primarily expressed in Macrophages, Monocytes, T cells, and CMPs. Conclusion This study investigates the role of ST8SIA4 as a common diagnostic gene and the involvement of the lysosomal pathway in both AS and ankylosing spondylitis. The findings may yield potential diagnostic biomarkers and offer new insights into the shared pathogenic mechanisms underlying these conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助robi采纳,获得10
2秒前
科目三应助九九采纳,获得10
3秒前
4秒前
蒲黄妗子完成签到,获得积分10
5秒前
不如造访安眠完成签到 ,获得积分10
6秒前
Ryan完成签到,获得积分10
6秒前
6秒前
CC发布了新的文献求助10
6秒前
7秒前
taotie发布了新的文献求助20
7秒前
南楼小阁主完成签到,获得积分10
8秒前
8秒前
天天快乐应助cc采纳,获得10
8秒前
10秒前
jinan完成签到,获得积分10
11秒前
爆浆蛋卷完成签到 ,获得积分10
11秒前
11秒前
moco完成签到,获得积分10
11秒前
chao发布了新的文献求助10
12秒前
沐沐发布了新的文献求助10
12秒前
秋风今是完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
sdahjjyk完成签到,获得积分10
16秒前
16秒前
17秒前
只想求文献完成签到,获得积分10
17秒前
1l2kl完成签到,获得积分10
18秒前
琦琦777完成签到,获得积分10
18秒前
YY发布了新的文献求助20
19秒前
20秒前
瘦瘦发布了新的文献求助10
20秒前
菲菲菲发布了新的文献求助10
21秒前
搜集达人应助sdahjjyk采纳,获得10
21秒前
xiaoxinxin完成签到,获得积分10
21秒前
robi发布了新的文献求助10
21秒前
yn发布了新的文献求助10
22秒前
jing111完成签到,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134791
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773726
捐赠科研通 2441524
什么是DOI,文献DOI怎么找? 1297985
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825