Headspace Characterization of Smokeless Powders Using Thermal Desorption‐Gas Chromatography‐Mass Spectrometry for Consideration in Canine Detection Training

质谱法 表征(材料科学) 色谱法 热脱附 气相色谱法 气相色谱-质谱法 化学 解吸 材料科学 纳米技术 吸附 有机化学
作者
Dawn M. Mills,Janet Crespo‐Cajigas
出处
期刊:Propellants, Explosives, Pyrotechnics [Wiley]
标识
DOI:10.1002/prep.202400157
摘要

Abstract Explosives detection canines (K9s) are routinely utilized for non‐contact detection of smokeless powders (SP) but the distinct odor(s) used by K9s for SP detection are unknown. Here, the headspace of single base (SB) and double base (DB) SPs was collected using dynamic air sampling and characterized using thermal desorption (TD) gas chromatography coupled to mass spectrometry to identify headspace analytes. TD method parameters were optimized and the headspace analysis of 26 SPs resulted in detection of 3291 compounds. Statistical analyses were utilized to narrow down significant components and principal component analysis was used to visualize potential relationships within the data. SP samples originating from the same countries clustered together and a separation in clustering for SB and DB SPs was also observed. Unique volatile chemical compounds were identified for SB and DB SPs (15 and 10 components respectively), as well as for SPs with differing origins. Shared entities between these sample groupings were also identified which may help provide a list of compounds useful for generalization of SPs regardless of manufacturing origin or SP type. Some components identified in the headspace include nitroglycerin, diphenylamine, butyl acetate, and phthalates among others. The variance in headspace data demonstrates the complexity of SP odor profiles and reiterates the need for paired K9 detection studies to understand generalization across SPs. Further implications of this research may allow for identification of additional SP training aids for inclusion in K9 kits to broaden their exposure to a diverse set of SP odor profiles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助学海无涯采纳,获得10
刚刚
wxd完成签到,获得积分10
刚刚
嗯嗯嗯完成签到,获得积分10
1秒前
yf_zhu关注了科研通微信公众号
1秒前
mtfx完成签到 ,获得积分10
1秒前
1秒前
帅气惜霜给帅气惜霜的求助进行了留言
1秒前
1秒前
2秒前
2秒前
3秒前
龙华之士发布了新的文献求助10
3秒前
bc完成签到,获得积分10
4秒前
H71000A发布了新的文献求助10
4秒前
dollarpuff完成签到,获得积分10
4秒前
科研通AI5应助当时明月在采纳,获得10
4秒前
yipyip完成签到,获得积分20
4秒前
Lxxixixi发布了新的文献求助10
5秒前
5秒前
润润轩轩发布了新的文献求助10
6秒前
lichaoyes发布了新的文献求助10
7秒前
王王的狗子完成签到 ,获得积分10
7秒前
zjuroc发布了新的文献求助20
7秒前
8秒前
浅笑发布了新的文献求助10
8秒前
文艺明杰发布了新的文献求助10
8秒前
8秒前
炙热冰夏发布了新的文献求助10
8秒前
8秒前
大意的青槐完成签到,获得积分10
9秒前
9秒前
nalan完成签到,获得积分10
9秒前
NN应助影子采纳,获得10
9秒前
天真思雁完成签到 ,获得积分10
10秒前
在水一方应助火星上白羊采纳,获得10
10秒前
小吕完成签到,获得积分10
11秒前
11秒前
wanci应助科研CY采纳,获得10
11秒前
Lxxixixi完成签到,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762