清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improved Early Detection of Tube Leaks Faults in Pulverised Coal-fired Boiler Using Deep Feed Forward Neural Network

锅炉(水暖) 环境科学 废物管理 石油工程 工程类
作者
Abdul Munir Abdul Karim,Yasir Mohd Mustafah,Zaenal Abidin
出处
期刊:pertanika journal of science and technology [University of Putra Malaysia]
卷期号:32 (6): 2655-2678
标识
DOI:10.47836/pjst.32.6.13
摘要

Boiler tube leaks significantly reduce the operational availability of power units, yet their early detection and prediction have not been fully realised in the industry. This paper introduces a novel approach employing deep feedforward neural networks for early detection of boiler tube leaks in pulverised coal-fired boilers. Early detection enhances repair planning, minimising downtime and production losses. It also improves monitoring and control of boiler tube failures, thereby optimising power plant operations and revenue. Diverse deep neural network models were developed and rigorously tested by leveraging 9 years of operational data (2012–2020). Exhaustive hyper-parameter optimisation, involving seven parameters, substantially improved predictive accuracy. By achieving training and testing accuracies of 82.8% to 99.3%, the study assessed their ability to detect boiler tube leaks over the same 9-year span, providing insights into leak detection capabilities. The models notably predicted all 12 identified tube leak events, averaging a 14-day lead time before boiler shutdown. In addition to leak prediction, a leak detection matrix was devised to analyse residual behaviour and reduce the likelihood of false alarms. However, the models’ predictive performance was observed to be limited to the following year, with satisfactory results for 2021 only. Incorporating the 2021 data into retraining significantly improved the predictions for 2022. The study concludes that while the models demonstrate robust short-term prediction capabilities, they require continuous retraining to maintain accuracy and relevance. This ongoing refinement is essential for keeping the models up-to-date and reliable in predicting future boiler tube leaks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
米修完成签到,获得积分20
27秒前
CodeCraft应助居家小可采纳,获得10
32秒前
43秒前
苗苗发布了新的文献求助10
47秒前
1分钟前
苗苗完成签到 ,获得积分10
1分钟前
loathebm发布了新的文献求助10
1分钟前
NexusExplorer应助loathebm采纳,获得10
1分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
1分钟前
1分钟前
居家小可发布了新的文献求助10
1分钟前
我睡觉的时候不困完成签到 ,获得积分10
1分钟前
居家小可完成签到,获得积分10
2分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
如歌完成签到,获得积分10
2分钟前
不羁之魂完成签到,获得积分10
3分钟前
3分钟前
3分钟前
飞快的孱发布了新的文献求助10
3分钟前
CYT完成签到,获得积分10
4分钟前
chenlc971125完成签到 ,获得积分10
5分钟前
科研通AI5应助义气的含烟采纳,获得10
5分钟前
5分钟前
5分钟前
义气的含烟完成签到,获得积分10
6分钟前
嘻嘻完成签到,获得积分10
7分钟前
Fairy完成签到,获得积分10
8分钟前
夏日香气完成签到 ,获得积分10
9分钟前
Ava应助pepper采纳,获得10
9分钟前
大模型应助科研通管家采纳,获得10
9分钟前
9分钟前
9分钟前
咯咯咯完成签到 ,获得积分10
10分钟前
11分钟前
飞快的孱发布了新的文献求助10
11分钟前
Jasper应助科研通管家采纳,获得10
11分钟前
pepper完成签到,获得积分20
12分钟前
12分钟前
飞快的孱发布了新的文献求助10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582490
求助须知:如何正确求助?哪些是违规求助? 4000216
关于积分的说明 12382261
捐赠科研通 3675224
什么是DOI,文献DOI怎么找? 2025756
邀请新用户注册赠送积分活动 1059394
科研通“疑难数据库(出版商)”最低求助积分说明 946082