已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved Early Detection of Tube Leaks Faults in Pulverised Coal-fired Boiler Using Deep Feed Forward Neural Network

锅炉(水暖) 环境科学 废物管理 石油工程 工程类
作者
Abdul Munir Abdul Karim,Yasir Mohd Mustafah,Zaenal Abidin
出处
期刊:pertanika journal of science and technology [University of Putra Malaysia]
卷期号:32 (6): 2655-2678
标识
DOI:10.47836/pjst.32.6.13
摘要

Boiler tube leaks significantly reduce the operational availability of power units, yet their early detection and prediction have not been fully realised in the industry. This paper introduces a novel approach employing deep feedforward neural networks for early detection of boiler tube leaks in pulverised coal-fired boilers. Early detection enhances repair planning, minimising downtime and production losses. It also improves monitoring and control of boiler tube failures, thereby optimising power plant operations and revenue. Diverse deep neural network models were developed and rigorously tested by leveraging 9 years of operational data (2012–2020). Exhaustive hyper-parameter optimisation, involving seven parameters, substantially improved predictive accuracy. By achieving training and testing accuracies of 82.8% to 99.3%, the study assessed their ability to detect boiler tube leaks over the same 9-year span, providing insights into leak detection capabilities. The models notably predicted all 12 identified tube leak events, averaging a 14-day lead time before boiler shutdown. In addition to leak prediction, a leak detection matrix was devised to analyse residual behaviour and reduce the likelihood of false alarms. However, the models’ predictive performance was observed to be limited to the following year, with satisfactory results for 2021 only. Incorporating the 2021 data into retraining significantly improved the predictions for 2022. The study concludes that while the models demonstrate robust short-term prediction capabilities, they require continuous retraining to maintain accuracy and relevance. This ongoing refinement is essential for keeping the models up-to-date and reliable in predicting future boiler tube leaks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助张涵晟采纳,获得10
刚刚
共享精神应助张涵晟采纳,获得10
刚刚
JamesPei应助张涵晟采纳,获得10
刚刚
Lucas应助张涵晟采纳,获得10
刚刚
丘比特应助张涵晟采纳,获得10
刚刚
隐形曼青应助张涵晟采纳,获得10
刚刚
OK完成签到 ,获得积分10
1秒前
Kq_完成签到,获得积分10
1秒前
辛勤的龙猫应助Ginger采纳,获得10
2秒前
优秀的傲南完成签到,获得积分10
3秒前
无极微光应助环境恢复采纳,获得20
3秒前
6秒前
6秒前
华仔应助张涵晟采纳,获得10
6秒前
6秒前
乐乐应助张涵晟采纳,获得10
6秒前
传奇3应助张涵晟采纳,获得10
7秒前
我是老大应助张涵晟采纳,获得30
7秒前
小二郎应助张涵晟采纳,获得10
7秒前
小蘑菇应助张涵晟采纳,获得30
7秒前
7秒前
在水一方应助张涵晟采纳,获得10
7秒前
打打应助张涵晟采纳,获得10
7秒前
赘婿应助张涵晟采纳,获得10
7秒前
小二郎应助张涵晟采纳,获得10
7秒前
小蘑菇应助科研迪采纳,获得10
8秒前
8秒前
9秒前
bkagyin应助Shelley采纳,获得10
10秒前
无私糖豆发布了新的文献求助10
10秒前
亘木发布了新的文献求助10
12秒前
12秒前
学术王王哥完成签到 ,获得积分10
12秒前
13秒前
Lexi28发布了新的文献求助10
13秒前
13秒前
天天快乐应助侯雨涵采纳,获得10
15秒前
wanci应助承乐采纳,获得10
15秒前
追寻的烤鸡完成签到,获得积分10
16秒前
请叫我表情帝完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763203
求助须知:如何正确求助?哪些是违规求助? 5539414
关于积分的说明 15404436
捐赠科研通 4899064
什么是DOI,文献DOI怎么找? 2635276
邀请新用户注册赠送积分活动 1583372
关于科研通互助平台的介绍 1538497