Improved Early Detection of Tube Leaks Faults in Pulverised Coal-fired Boiler Using Deep Feed Forward Neural Network

锅炉(水暖) 环境科学 废物管理 石油工程 工程类
作者
Abdul Munir Abdul Karim,Yasir Mohd Mustafah,Zaenal Abidin
出处
期刊:pertanika journal of science and technology 卷期号:32 (6): 2655-2678
标识
DOI:10.47836/pjst.32.6.13
摘要

Boiler tube leaks significantly reduce the operational availability of power units, yet their early detection and prediction have not been fully realised in the industry. This paper introduces a novel approach employing deep feedforward neural networks for early detection of boiler tube leaks in pulverised coal-fired boilers. Early detection enhances repair planning, minimising downtime and production losses. It also improves monitoring and control of boiler tube failures, thereby optimising power plant operations and revenue. Diverse deep neural network models were developed and rigorously tested by leveraging 9 years of operational data (2012–2020). Exhaustive hyper-parameter optimisation, involving seven parameters, substantially improved predictive accuracy. By achieving training and testing accuracies of 82.8% to 99.3%, the study assessed their ability to detect boiler tube leaks over the same 9-year span, providing insights into leak detection capabilities. The models notably predicted all 12 identified tube leak events, averaging a 14-day lead time before boiler shutdown. In addition to leak prediction, a leak detection matrix was devised to analyse residual behaviour and reduce the likelihood of false alarms. However, the models’ predictive performance was observed to be limited to the following year, with satisfactory results for 2021 only. Incorporating the 2021 data into retraining significantly improved the predictions for 2022. The study concludes that while the models demonstrate robust short-term prediction capabilities, they require continuous retraining to maintain accuracy and relevance. This ongoing refinement is essential for keeping the models up-to-date and reliable in predicting future boiler tube leaks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bolaka发布了新的文献求助10
刚刚
lakiliu应助一杯茶采纳,获得10
2秒前
3秒前
ccccccc发布了新的文献求助10
3秒前
huangdq6完成签到 ,获得积分10
3秒前
oceanao应助科研通管家采纳,获得20
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
科研通AI2S应助笑哈哈采纳,获得10
4秒前
4秒前
ww发布了新的文献求助10
5秒前
科研通AI2S应助fasfsbbsdd采纳,获得10
5秒前
美清完成签到,获得积分10
7秒前
不配.应助ABS采纳,获得10
7秒前
cloud发布了新的文献求助50
7秒前
8秒前
8秒前
8秒前
CipherSage应助Bolaka采纳,获得10
9秒前
zjc1111完成签到,获得积分10
9秒前
123456hhh发布了新的文献求助10
12秒前
一杯茶应助立恒儿采纳,获得10
12秒前
13秒前
啦啦啦发布了新的文献求助10
14秒前
甜味拾荒者完成签到,获得积分10
14秒前
14秒前
秀丽烨霖应助笑哈哈采纳,获得10
15秒前
可爱的函函应助上进生采纳,获得10
16秒前
Nature发布了新的文献求助10
16秒前
deadsea完成签到,获得积分10
16秒前
Orange应助duang采纳,获得10
17秒前
加鱼完成签到,获得积分10
17秒前
hl应助Dusk大寺柯采纳,获得10
20秒前
20秒前
内向秋寒完成签到,获得积分10
21秒前
怕孤独的如凡完成签到 ,获得积分10
21秒前
mu完成签到,获得积分20
22秒前
23秒前
fhh完成签到,获得积分10
24秒前
爆米花应助粒粒采纳,获得100
25秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170264
求助须知:如何正确求助?哪些是违规求助? 2821489
关于积分的说明 7934302
捐赠科研通 2481692
什么是DOI,文献DOI怎么找? 1322076
科研通“疑难数据库(出版商)”最低求助积分说明 633463
版权声明 602595