Improved Early Detection of Tube Leaks Faults in Pulverised Coal-fired Boiler Using Deep Feed Forward Neural Network

锅炉(水暖) 环境科学 废物管理 石油工程 工程类
作者
Abdul Munir Abdul Karim,Yasir Mohd Mustafah,Zaenal Abidin
出处
期刊:pertanika journal of science and technology [University of Putra Malaysia]
卷期号:32 (6): 2655-2678
标识
DOI:10.47836/pjst.32.6.13
摘要

Boiler tube leaks significantly reduce the operational availability of power units, yet their early detection and prediction have not been fully realised in the industry. This paper introduces a novel approach employing deep feedforward neural networks for early detection of boiler tube leaks in pulverised coal-fired boilers. Early detection enhances repair planning, minimising downtime and production losses. It also improves monitoring and control of boiler tube failures, thereby optimising power plant operations and revenue. Diverse deep neural network models were developed and rigorously tested by leveraging 9 years of operational data (2012–2020). Exhaustive hyper-parameter optimisation, involving seven parameters, substantially improved predictive accuracy. By achieving training and testing accuracies of 82.8% to 99.3%, the study assessed their ability to detect boiler tube leaks over the same 9-year span, providing insights into leak detection capabilities. The models notably predicted all 12 identified tube leak events, averaging a 14-day lead time before boiler shutdown. In addition to leak prediction, a leak detection matrix was devised to analyse residual behaviour and reduce the likelihood of false alarms. However, the models’ predictive performance was observed to be limited to the following year, with satisfactory results for 2021 only. Incorporating the 2021 data into retraining significantly improved the predictions for 2022. The study concludes that while the models demonstrate robust short-term prediction capabilities, they require continuous retraining to maintain accuracy and relevance. This ongoing refinement is essential for keeping the models up-to-date and reliable in predicting future boiler tube leaks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助qian采纳,获得10
刚刚
司徒诗蕾完成签到 ,获得积分10
2秒前
3秒前
5秒前
HeNeArKrXeRn发布了新的文献求助10
6秒前
王青青完成签到,获得积分10
6秒前
qian完成签到,获得积分20
8秒前
violetlishu完成签到 ,获得积分10
8秒前
美好颜发布了新的文献求助10
9秒前
子车雁开发布了新的文献求助10
9秒前
11秒前
DezhaoWang完成签到,获得积分10
11秒前
15秒前
大方荟发布了新的文献求助10
15秒前
nater2ver完成签到,获得积分10
15秒前
子车雁开完成签到,获得积分10
16秒前
嘉星糖完成签到,获得积分10
16秒前
hrzmlily完成签到,获得积分10
17秒前
wanci应助偷看星星采纳,获得10
19秒前
20秒前
nater3ver完成签到,获得积分10
30秒前
cxlhzq完成签到,获得积分10
33秒前
35秒前
mengwensi完成签到,获得积分10
35秒前
情怀应助科研通管家采纳,获得10
35秒前
35秒前
云中应助科研通管家采纳,获得20
35秒前
35秒前
35秒前
35秒前
35秒前
www应助科研通管家采纳,获得10
35秒前
热心雪一完成签到 ,获得积分10
35秒前
miemie66完成签到,获得积分10
36秒前
qh0305完成签到,获得积分10
39秒前
nater4ver完成签到,获得积分10
42秒前
奋斗的醉柳完成签到,获得积分10
43秒前
友好的牛排完成签到,获得积分10
44秒前
lemon完成签到,获得积分10
44秒前
majf完成签到,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511056
关于积分的说明 11156089
捐赠科研通 3245497
什么是DOI,文献DOI怎么找? 1793093
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268