Improved Early Detection of Tube Leaks Faults in Pulverised Coal-fired Boiler Using Deep Feed Forward Neural Network

锅炉(水暖) 环境科学 废物管理 石油工程 工程类
作者
Abdul Munir Abdul Karim,Yasir Mohd Mustafah,Zaenal Abidin
出处
期刊:pertanika journal of science and technology [University of Putra Malaysia]
卷期号:32 (6): 2655-2678
标识
DOI:10.47836/pjst.32.6.13
摘要

Boiler tube leaks significantly reduce the operational availability of power units, yet their early detection and prediction have not been fully realised in the industry. This paper introduces a novel approach employing deep feedforward neural networks for early detection of boiler tube leaks in pulverised coal-fired boilers. Early detection enhances repair planning, minimising downtime and production losses. It also improves monitoring and control of boiler tube failures, thereby optimising power plant operations and revenue. Diverse deep neural network models were developed and rigorously tested by leveraging 9 years of operational data (2012–2020). Exhaustive hyper-parameter optimisation, involving seven parameters, substantially improved predictive accuracy. By achieving training and testing accuracies of 82.8% to 99.3%, the study assessed their ability to detect boiler tube leaks over the same 9-year span, providing insights into leak detection capabilities. The models notably predicted all 12 identified tube leak events, averaging a 14-day lead time before boiler shutdown. In addition to leak prediction, a leak detection matrix was devised to analyse residual behaviour and reduce the likelihood of false alarms. However, the models’ predictive performance was observed to be limited to the following year, with satisfactory results for 2021 only. Incorporating the 2021 data into retraining significantly improved the predictions for 2022. The study concludes that while the models demonstrate robust short-term prediction capabilities, they require continuous retraining to maintain accuracy and relevance. This ongoing refinement is essential for keeping the models up-to-date and reliable in predicting future boiler tube leaks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Andd发布了新的文献求助10
刚刚
1秒前
植物园完成签到,获得积分10
2秒前
2秒前
ruirui发布了新的文献求助30
2秒前
无花果应助QP采纳,获得10
2秒前
曾经友琴发布了新的文献求助10
2秒前
复杂访冬发布了新的文献求助10
3秒前
左秋白发布了新的文献求助10
3秒前
whiteside发布了新的文献求助10
3秒前
保藏完成签到,获得积分10
3秒前
坚强金鱼发布了新的文献求助10
3秒前
3秒前
tph发布了新的文献求助10
3秒前
牛马完成签到,获得积分10
4秒前
4秒前
4秒前
丰泽园完成签到,获得积分10
5秒前
时光宝石一次完成签到,获得积分10
5秒前
迷人雪一发布了新的文献求助10
6秒前
乐观的素阴完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
JamesPei应助幽默尔蓝采纳,获得10
8秒前
失眠的火车完成签到 ,获得积分10
8秒前
水蜜桃完成签到 ,获得积分10
8秒前
9秒前
爆米花应助东郭雁梅采纳,获得10
9秒前
知然完成签到,获得积分20
10秒前
zcl完成签到,获得积分20
10秒前
欧阳万仇发布了新的文献求助30
10秒前
11秒前
ruirui完成签到,获得积分10
12秒前
鹏程发布了新的文献求助10
12秒前
HJJHJH发布了新的文献求助10
13秒前
14秒前
元谷雪发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420