Calibration of Typhoon Track Forecasts Based on Deep Learning Methods

台风 计算机科学 深度学习 天气研究与预报模式 人工智能 规范化(社会学) 卡尔曼滤波器 均方误差 机器学习 气象学 统计 地理 数学 社会学 人类学
作者
Chengchen Tao,Zhizu Wang,Yilun Tian,Yaoyao Han,Keke Wang,Qiang Li,Juncheng Zuo
出处
期刊:Atmosphere [MDPI AG]
卷期号:15 (9): 1125-1125
标识
DOI:10.3390/atmos15091125
摘要

An accurate forecast of typhoon tracks is crucial for disaster warning and mitigation. However, existing numerical weather prediction models, such as the Weather Research and Forecasting (WRF) model, still exhibit significant errors in track forecasts. This study aims to improve forecast accuracy by correcting WRF-forecasted tracks using deep learning models, including Bidirectional Long Short-Term Memory (BiLSTM) + Convolutional Long Short-Term Memory (ConvLSTM) + Wide and Deep Learning (WDL), BiLSTM + Convolutional Gated Recurrent Unit (ConvGRU) + WDL, and BiLSTM + ConvLSTM + Extreme Deep Factorization Machine (xDeepFM), with a comparison to the Kalman Filter. The results demonstrate that the BiLSTM + ConvLSTM + WDL model reduces the 72 h track prediction error (TPE) from 255.18 km to 159.23 km, representing a 37.6% improvement over the original WRF model, and exhibits significant advantages across all evaluation metrics, particularly in key indicators such as Bias2, Mean Squared Error (MSE), and Sequence. The decomposition of MSE further validates the importance of the BiLSTM, ConvLSTM, WDL, and Temporal Normalization (TN) layers in enhancing the model’s spatio-temporal feature-capturing ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助张自信采纳,获得10
刚刚
刚刚
虚幻羊发布了新的文献求助10
1秒前
沙拉发布了新的文献求助10
1秒前
iNk应助陈淑玲采纳,获得10
1秒前
科研通AI2S应助BWZ采纳,获得10
1秒前
1秒前
2秒前
Ade完成签到,获得积分10
3秒前
3秒前
lx840518发布了新的文献求助10
3秒前
兴奋大开完成签到,获得积分10
4秒前
虚幻羊完成签到,获得积分20
4秒前
Meng完成签到,获得积分10
5秒前
张掖完成签到,获得积分10
5秒前
Lucas应助kangkang采纳,获得10
6秒前
大晨完成签到,获得积分10
6秒前
哈哈哈haha发布了新的文献求助20
7秒前
cc发布了新的文献求助10
7秒前
Yolo发布了新的文献求助10
7秒前
7秒前
allenice完成签到,获得积分10
7秒前
8秒前
8秒前
音乐发布了新的文献求助10
8秒前
英姑应助科研通管家采纳,获得10
9秒前
华仔应助沙拉采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
Owen应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得30
10秒前
FashionBoy应助科研通管家采纳,获得30
10秒前
Orange应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
香蕉觅云应助夏夏采纳,获得10
10秒前
英俊的铭应助夏夏采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762