Tackling Event-Based Lip-Reading by Exploring Multigrained Spatiotemporal Clues

阅读(过程) 事件(粒子物理) 计算机科学 语言学 物理 哲学 量子力学
作者
Ganchao Tan,Zengyu Wan,Yang Wang,Yang Cao,Zheng-Jun Zha
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3440495
摘要

Automatic lip-reading (ALR) is the task of recognizing words based on visual information obtained from the speaker's lip movements. In this study, we introduce event cameras, a novel type of sensing device, for ALR. Event cameras offer both technical and application advantages over conventional cameras for ALR due to their higher temporal resolution, less redundant visual information, and lower power consumption. To recognize words from the event data, we propose a novel multigrained spatiotemporal features learning framework, which is capable of perceiving fine-grained spatiotemporal features from microsecond time-resolved event data. Specifically, we first convert the event data into event frames of multiple temporal resolutions to avoid losing too much visual information at the event representation stage. Then, they are fed into a multibranch subnetwork where the branch operating on low-rate frames can perceive spatially complete but temporally coarse features, while the branch operating on high frame rate can perceive spatially coarse but temporally fine features. Thus, fine-grained spatial and temporal features can be simultaneously learned by integrating the features perceived by different branches. Furthermore, to model the temporal relationships in the event stream, we design a temporal aggregation subnetwork to aggregate the features perceived by the multibranch subnetwork. In addition, we collect two event-based lip-reading datasets (DVS-Lip and DVS-LRW100) for the study of the event-based lip-reading task. Experimental results demonstrate the superiority of the proposed model over the state-of-the-art event-based action recognition models and video-based lip-reading models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到,获得积分10
刚刚
rachel-yue发布了新的文献求助50
刚刚
顺心的书包完成签到,获得积分20
1秒前
1秒前
1秒前
沉默烨霖发布了新的文献求助10
4秒前
王龑发布了新的文献求助10
5秒前
6秒前
雅文发布了新的文献求助10
6秒前
changaipei完成签到,获得积分10
7秒前
luwenxuan完成签到,获得积分10
7秒前
神奇的光子完成签到,获得积分10
8秒前
英姑应助liuguohua126采纳,获得10
8秒前
8秒前
Marcus发布了新的文献求助10
9秒前
xuxux发布了新的文献求助10
10秒前
Jason发布了新的文献求助10
13秒前
乐乐应助欢呼的以蓝采纳,获得10
13秒前
斯文败类应助蜡笔小屁采纳,获得10
13秒前
13秒前
TRz完成签到,获得积分10
14秒前
曲慕蕊发布了新的文献求助10
16秒前
饱满芷卉完成签到,获得积分10
17秒前
吹泡泡的红豆完成签到 ,获得积分10
17秒前
17秒前
18秒前
生椰拿铁完成签到,获得积分10
18秒前
sci来完成签到,获得积分10
19秒前
丘比特应助widesky777采纳,获得10
19秒前
w_sea应助Marcus采纳,获得10
20秒前
落落完成签到,获得积分10
21秒前
CDI和LIB发布了新的文献求助10
22秒前
Ryki应助曲慕蕊采纳,获得10
22秒前
bearrra完成签到,获得积分10
22秒前
jjamazing发布了新的文献求助10
22秒前
青天鸟1989完成签到,获得积分10
22秒前
23秒前
23秒前
xuxux完成签到,获得积分10
23秒前
gyacgbjd完成签到,获得积分10
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327916
求助须知:如何正确求助?哪些是违规求助? 2958108
关于积分的说明 8589214
捐赠科研通 2636402
什么是DOI,文献DOI怎么找? 1442937
科研通“疑难数据库(出版商)”最低求助积分说明 668449
邀请新用户注册赠送积分活动 655663