🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情
亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structural Relation Modeling of 3D Point Clouds

点云 计算机科学 嵌入 关系(数据库) 理论计算机科学 代表(政治) 成对比较 数据挖掘 骨料(复合) 人工智能 材料科学 政治 政治学 法学 复合材料
作者
Yu Zheng,Jiwen Lu,Yueqi Duan,Jie Zhou
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4867-4881
标识
DOI:10.1109/tip.2024.3451940
摘要

In this paper, we propose an effective plug-and-play module called structural relation network (SRN) to model structural dependencies in 3D point clouds for feature representation. Existing network architectures such as PointNet++ and RS-CNN capture local structures individually and ignore the inner interactions between different sub-clouds. Motivated by the fact that structural relation modeling plays critical roles for humans to understand 3D objects, our SRN exploits local information by modeling structural relations in 3D spaces. For a given sub-cloud of point sets, SRN firstly extracts its geometrical and locational relations with the other sub-clouds and maps them into the embedding space, then aggregates both relational features with the other sub-clouds. As the variation of semantics embedded in different sub-clouds is ignored by SRN, we further extend SRN to enable dynamic message passing between different sub-clouds. We propose a graph-based structural relation network (GSRN) where sub-clouds and their pairwise relations are modeled as nodes and edges respectively, so that the node features are updated by the messages along the edges. Since the node features might not be well preserved when acquiring the global representation, we propose a Combined Entropy Readout (CER) function to adaptively aggregate them into the holistic representation, so that GSRN simultaneously models the local-local and local-global region-wise interaction. The proposed SRN and GSRN modules are simple, interpretable, and do not require any additional supervision signals, which can be easily equipped with the existing networks. Experimental results on the benchmark datasets (ScanObjectNN, ModelNet40, ShapeNet Part, S3DIS, ScanNet and SUN-RGBD) indicate promising boosts on the tasks of 3D point cloud classification, segmentation and object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
23秒前
CATH完成签到 ,获得积分10
28秒前
脸小呆呆发布了新的文献求助10
29秒前
31秒前
SCINEXUS完成签到,获得积分0
32秒前
35秒前
37秒前
ShibaoWu发布了新的文献求助30
43秒前
Jackylee完成签到,获得积分10
50秒前
ShibaoWu完成签到 ,获得积分10
59秒前
希望天下0贩的0应助sakana采纳,获得10
1分钟前
wing完成签到 ,获得积分10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
天真的曼卉完成签到,获得积分10
1分钟前
知行完成签到,获得积分10
2分钟前
2分钟前
ljz发布了新的文献求助10
3分钟前
3分钟前
3分钟前
田様应助啦啦啦采纳,获得10
3分钟前
脸小呆呆发布了新的文献求助10
3分钟前
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
烟花应助科研通管家采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得30
3分钟前
啦啦啦发布了新的文献求助10
3分钟前
很酷的妞子完成签到 ,获得积分10
3分钟前
4分钟前
酱豆豆完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
zhangyy发布了新的文献求助10
4分钟前
5分钟前
adcc102完成签到 ,获得积分10
5分钟前
大仙发布了新的文献求助10
5分钟前
共享精神应助大仙采纳,获得10
5分钟前
andrele应助科研通管家采纳,获得10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Comprehensive Computational Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3603932
求助须知:如何正确求助?哪些是违规求助? 3172055
关于积分的说明 9573038
捐赠科研通 2878148
什么是DOI,文献DOI怎么找? 1580818
邀请新用户注册赠送积分活动 743245
科研通“疑难数据库(出版商)”最低求助积分说明 725878