Grading exams using large language models: A comparison between human and AI grading of exams in higher education using ChatGPT

分级(工程) 数学教育 高等教育 心理学 计算机科学 生物 政治学 生态学 法学
作者
Jonas Flodén
出处
期刊:British Educational Research Journal [Wiley]
标识
DOI:10.1002/berj.4069
摘要

Abstract This study compares how the generative AI (GenAI) large language model (LLM) ChatGPT performs in grading university exams compared to human teachers. Aspects investigated include consistency, large discrepancies and length of answer. Implications for higher education, including the role of teachers and ethics, are also discussed. Three Master's‐level exams were scored using ChatGPT 3.5, and the results were compared with the teachers' scoring and the grading teachers were interviewed. In total, 463 exam responses were graded. With each response being graded at least three times, a total of 1389 gradings were conducted. For the final exam scores, 70% of ChatGPT's gradings were within 10% of the teachers' gradings and 31% within 5%. ChatGPT tended to give marginally higher scores. The agreement on grades is 30%, but 45% of the exams received an adjacent grade. On individual questions, ChatGPT is more inclined to avoid very high or very low scores. ChatGPT struggles to correctly score questions closely related to the course lectures but performs better on more general questions. The AI can generate plausible scores on university exams that, at first glance, look similar to a human grader. There are differences but it is not unlikely that two different human graders could result in similar discrepancies. During the interviews, teachers expressed their surprise at how well ChatGPT's grading matched their own. Increased use of AI can lead to ethical challenges as exams are entrusted to a machine whose decision‐making criteria are not fully understood, especially concerning potential bias in training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鲤鱼一鸣完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
CYC完成签到 ,获得积分10
2秒前
Jc发布了新的文献求助20
2秒前
2秒前
忧郁凡灵完成签到,获得积分10
2秒前
2秒前
孙燕应助忧伤的天真采纳,获得10
3秒前
为你博弈发布了新的文献求助10
5秒前
大道无形我有型完成签到,获得积分10
5秒前
6秒前
6秒前
up发布了新的文献求助10
6秒前
6秒前
GQ发布了新的文献求助10
6秒前
7秒前
寻梦完成签到,获得积分10
8秒前
学术老6完成签到,获得积分10
9秒前
挽风风风风完成签到,获得积分10
9秒前
酷波er应助awei采纳,获得10
9秒前
9秒前
师宁发布了新的文献求助10
10秒前
壮观素完成签到,获得积分10
10秒前
10秒前
CPF发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
朱问安发布了新的文献求助10
12秒前
zcy发布了新的文献求助10
13秒前
小涵发布了新的文献求助10
13秒前
GP完成签到,获得积分10
14秒前
14秒前
韩jl发布了新的文献求助20
14秒前
15秒前
星点点发布了新的文献求助10
15秒前
隐形曼青应助没有昵称采纳,获得10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011327
求助须知:如何正确求助?哪些是违规求助? 3551014
关于积分的说明 11307268
捐赠科研通 3285224
什么是DOI,文献DOI怎么找? 1811001
邀请新用户注册赠送积分活动 886685
科研通“疑难数据库(出版商)”最低求助积分说明 811597