Grading exams using large language models: A comparison between human and AI grading of exams in higher education using ChatGPT

分级(工程) 数学教育 高等教育 心理学 计算机科学 生物 政治学 生态学 法学
作者
Jonas Flodén
出处
期刊:British Educational Research Journal [Wiley]
标识
DOI:10.1002/berj.4069
摘要

Abstract This study compares how the generative AI (GenAI) large language model (LLM) ChatGPT performs in grading university exams compared to human teachers. Aspects investigated include consistency, large discrepancies and length of answer. Implications for higher education, including the role of teachers and ethics, are also discussed. Three Master's‐level exams were scored using ChatGPT 3.5, and the results were compared with the teachers' scoring and the grading teachers were interviewed. In total, 463 exam responses were graded. With each response being graded at least three times, a total of 1389 gradings were conducted. For the final exam scores, 70% of ChatGPT's gradings were within 10% of the teachers' gradings and 31% within 5%. ChatGPT tended to give marginally higher scores. The agreement on grades is 30%, but 45% of the exams received an adjacent grade. On individual questions, ChatGPT is more inclined to avoid very high or very low scores. ChatGPT struggles to correctly score questions closely related to the course lectures but performs better on more general questions. The AI can generate plausible scores on university exams that, at first glance, look similar to a human grader. There are differences but it is not unlikely that two different human graders could result in similar discrepancies. During the interviews, teachers expressed their surprise at how well ChatGPT's grading matched their own. Increased use of AI can lead to ethical challenges as exams are entrusted to a machine whose decision‐making criteria are not fully understood, especially concerning potential bias in training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI2S应助辞轲采纳,获得10
3秒前
二猫发布了新的文献求助10
4秒前
LJ发布了新的文献求助10
4秒前
6秒前
11发布了新的文献求助10
6秒前
李爱国应助海藻采纳,获得10
7秒前
阿末应助1111采纳,获得10
7秒前
鱼圆杂铺完成签到,获得积分10
8秒前
勤劳的星月完成签到,获得积分10
10秒前
11秒前
11秒前
Orange应助LJ采纳,获得10
12秒前
斯文败类应助苏打采纳,获得10
13秒前
星空发布了新的文献求助10
15秒前
汉堡包应助半颗橙子采纳,获得10
15秒前
无明怀雪发布了新的文献求助10
16秒前
科研通AI2S应助welljoea采纳,获得30
17秒前
IIIris完成签到,获得积分10
18秒前
用盲盒的方式打开周末完成签到,获得积分10
19秒前
会放电的皮卡丘完成签到 ,获得积分10
19秒前
往往超可爱完成签到 ,获得积分10
20秒前
21秒前
CodeCraft应助初见采纳,获得10
21秒前
22秒前
22秒前
独特的凝荷完成签到 ,获得积分10
22秒前
哩哩完成签到 ,获得积分10
23秒前
鱼儿忆流年完成签到 ,获得积分10
24秒前
科研通AI2S应助无明怀雪采纳,获得10
25秒前
海藻发布了新的文献求助10
25秒前
26秒前
27秒前
Hello应助漂亮夏兰采纳,获得10
27秒前
明亮巨人完成签到 ,获得积分10
27秒前
29秒前
半颗橙子发布了新的文献求助10
29秒前
舒适的晓旋完成签到,获得积分10
30秒前
31秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1100
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3115606
求助须知:如何正确求助?哪些是违规求助? 2765759
关于积分的说明 7683922
捐赠科研通 2421126
什么是DOI,文献DOI怎么找? 1285361
科研通“疑难数据库(出版商)”最低求助积分说明 620028
版权声明 599799