Cognitive-affective maps (CAMs) as measurement tool – Elaboration of quantitative and qualitative test-retest reliability

可靠性(半导体) 心理学 认知 考试(生物学) 认知心理学 精化 构造(python库) 应用心理学 社会心理学 计算机科学 量子力学 神经科学 人文学科 生物 古生物学 功率(物理) 哲学 物理 程序设计语言
作者
Wilhelm Gros,Lisa Reuter,Julia Sprich,Dennis Schuldzinski,Julius Fenn,Andrea Kiesel
出处
期刊:Technology in Society [Elsevier]
卷期号:78: 102651-102651
标识
DOI:10.1016/j.techsoc.2024.102651
摘要

Cognitive-Affective Mapping is a novel mind-map like technique enabling to visually represent existing belief systems or any declarative knowledge and can therefore be used in empirical social research. It can be applied broadly, for example to assess technology acceptance, and the obtained data can be analyzed with quantitative and/or qualitative approaches. Here, we aimed for the first time to assess the data quality of Cognitive-Affective Maps (CAMs). To assess whether the findings of CAM studies are due to measurement errors or due to a real effect, we aimed for a quantitative as well as qualitative test-retest reliability approach. Participants (62 in total) drew a CAM online on their cognitions, emotions and experiences regarding the topic "Universal Basic Income" twice with delays of the two measurement time points ranging from 7 to 24 days. Assuming that the evaluation of this topic is driven by values, a stable psychological measurement construct, we presume a high test-retest reliability. Pearson's Product-Moment-Correlations and Spearman's Rank Correlations of CAM parameters show quantitative test-retest reliabilities up to 0.78. Furthermore, two raters identified on average 52 % of repeated or at least semantically similar concepts drawn by the participants between the two measurement time points. Taken together, these findings are promising for a method with this amount of degrees of freedom.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jared应助HUIHUI采纳,获得10
1秒前
临澈发布了新的文献求助10
2秒前
canvas完成签到,获得积分10
3秒前
herococa应助HUIHUI采纳,获得10
4秒前
4秒前
万能图书馆应助画檐蛛网采纳,获得10
5秒前
6秒前
ccc完成签到,获得积分10
6秒前
我是老大应助ZXJ采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
ding应助临澈采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
Redback应助科研通管家采纳,获得10
7秒前
asdfzxcv应助科研通管家采纳,获得10
7秒前
asdfzxcv应助科研通管家采纳,获得10
7秒前
Redback应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
Redback应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
Redback应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
Redback应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
xingdianwei完成签到,获得积分10
9秒前
9秒前
10秒前
Akim应助过期酸奶盖采纳,获得10
10秒前
NexusExplorer应助Magic麦采纳,获得10
11秒前
拼搏大地发布了新的文献求助10
12秒前
114514发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648842
求助须知:如何正确求助?哪些是违规求助? 4776854
关于积分的说明 15045836
捐赠科研通 4807704
什么是DOI,文献DOI怎么找? 2571046
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486624