Chest x‐ray images: transfer learning model in COVID‐19 detection

2019年冠状病毒病(COVID-19) 肺炎 学习迁移 一致性(知识库) 人工智能 灵敏度(控制系统) 支持向量机 医学 计算机科学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 传输(计算) 模式识别(心理学) 数学 机器学习 核医学 爆发 病理 内科学 疾病 传染病(医学专业) 电子工程 并行计算 工程类
作者
S. Mao,Saltanat Kulbayeva,Mikhail Osadchuk
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
标识
DOI:10.1111/jep.14215
摘要

Abstract Rationale, Aims and Objectives This research aims to develop an effective algorithm for diagnosing COVID‐19 in chest X‐rays using the transfer learning method and support vector machines. Method In total, data was collected from 10 clinics, including both large city hospitals and smaller medical institutions. This ensured a diverse range of geographical and demographic information in the sample. An extensive data set was collected, including 10,000 chest X‐ray images. 5000 images represent normal cases, 3993 images represent pneumonia cases, and 1007 images represent COVID‐19 cases. Machine learning methods were applied to develop a classification model, and the results were compared with seven state‐of‐the‐art models and a lightweight CNN architecture. Results The results showed that the proposed method achieves high accuracy values (Accuracy): 0.95 for COVID‐19, 0.89 for pneumonia, and 0.92 for normal images ( p < 0.05). Comparison with other models demonstrates statistically significant superiority of our method in accuracy across all three classes. The EfficientNet‐B0 model surpasses our method only in accuracy for normal images with p < 0.01, confirming the advantages of our method. Our method demonstrates high sensitivity values (Sensitivity): 0.96 for COVID‐19, 0.88 for pneumonia, and 0.93 for normal images ( p < 0.05), outperforming most of the compared models. Correlation analysis showed Pearson coefficients of 0.92, 0.89, and 0.94 for COVID‐19, pneumonia, and normal images, respectively, confirming a high degree of consistency between predicted and true class labels. In addition, the model was validated on external datasets to assess its generalizability. This validation confirmed its high level of effectiveness in a variety of clinical settings. Conclusion This study confirms the importance of applying machine learning methods in medical applications and opens new perspectives for early diagnosis of infectious diseases. The practical application of the obtained results can enhance the efficiency of diagnosis and control the spread of COVID‐19, as well as contribute to the development of innovative methods in medical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jingzhang发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
5秒前
赘婿应助小鱼儿采纳,获得10
5秒前
李7发布了新的文献求助10
6秒前
隐形曼青应助叶y采纳,获得10
7秒前
123444发布了新的文献求助10
10秒前
10秒前
TYJ完成签到,获得积分20
10秒前
11秒前
kedaya应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
kk2024应助科研通管家采纳,获得20
11秒前
Ava应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
ED应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
12秒前
李7完成签到,获得积分20
14秒前
852应助123444采纳,获得10
14秒前
15秒前
Aria发布了新的文献求助10
15秒前
15秒前
15秒前
mi完成签到,获得积分10
18秒前
18秒前
19秒前
Jenny发布了新的文献求助10
19秒前
19秒前
zzqblue发布了新的文献求助10
20秒前
哈哈哈完成签到,获得积分10
20秒前
完美世界应助牛牛眉目采纳,获得10
23秒前
吕不韦发布了新的文献求助10
25秒前
念姬发布了新的文献求助10
25秒前
黑猫小苍完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511740
关于积分的说明 11159404
捐赠科研通 3246305
什么是DOI,文献DOI怎么找? 1793370
邀请新用户注册赠送积分活动 874364
科研通“疑难数据库(出版商)”最低求助积分说明 804357