Chest x‐ray images: transfer learning model in COVID‐19 detection

2019年冠状病毒病(COVID-19) 肺炎 学习迁移 一致性(知识库) 人工智能 灵敏度(控制系统) 支持向量机 医学 计算机科学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 传输(计算) 模式识别(心理学) 数学 机器学习 核医学 爆发 病理 内科学 疾病 传染病(医学专业) 电子工程 并行计算 工程类
作者
S. Mao,Saltanat Kulbayeva,Mikhail Osadchuk
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
标识
DOI:10.1111/jep.14215
摘要

Abstract Rationale, Aims and Objectives This research aims to develop an effective algorithm for diagnosing COVID‐19 in chest X‐rays using the transfer learning method and support vector machines. Method In total, data was collected from 10 clinics, including both large city hospitals and smaller medical institutions. This ensured a diverse range of geographical and demographic information in the sample. An extensive data set was collected, including 10,000 chest X‐ray images. 5000 images represent normal cases, 3993 images represent pneumonia cases, and 1007 images represent COVID‐19 cases. Machine learning methods were applied to develop a classification model, and the results were compared with seven state‐of‐the‐art models and a lightweight CNN architecture. Results The results showed that the proposed method achieves high accuracy values (Accuracy): 0.95 for COVID‐19, 0.89 for pneumonia, and 0.92 for normal images ( p < 0.05). Comparison with other models demonstrates statistically significant superiority of our method in accuracy across all three classes. The EfficientNet‐B0 model surpasses our method only in accuracy for normal images with p < 0.01, confirming the advantages of our method. Our method demonstrates high sensitivity values (Sensitivity): 0.96 for COVID‐19, 0.88 for pneumonia, and 0.93 for normal images ( p < 0.05), outperforming most of the compared models. Correlation analysis showed Pearson coefficients of 0.92, 0.89, and 0.94 for COVID‐19, pneumonia, and normal images, respectively, confirming a high degree of consistency between predicted and true class labels. In addition, the model was validated on external datasets to assess its generalizability. This validation confirmed its high level of effectiveness in a variety of clinical settings. Conclusion This study confirms the importance of applying machine learning methods in medical applications and opens new perspectives for early diagnosis of infectious diseases. The practical application of the obtained results can enhance the efficiency of diagnosis and control the spread of COVID‐19, as well as contribute to the development of innovative methods in medical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫陌发布了新的文献求助10
1秒前
科学家发布了新的文献求助10
2秒前
wanci应助清爽夜雪采纳,获得10
7秒前
紫陌完成签到,获得积分10
8秒前
CodeCraft应助zjw采纳,获得10
8秒前
banbieshenlu完成签到,获得积分10
8秒前
iNk应助doxiao采纳,获得10
13秒前
快乐滑板应助doxiao采纳,获得10
13秒前
茶弥完成签到 ,获得积分10
14秒前
20秒前
24秒前
Orange应助七大洋的风采纳,获得10
24秒前
25秒前
zjw发布了新的文献求助10
25秒前
Crema应助科学家采纳,获得10
27秒前
小贝壳要快乐吖完成签到,获得积分10
28秒前
等待昊强发布了新的文献求助10
29秒前
zyyyy发布了新的文献求助10
30秒前
31秒前
牧长一完成签到 ,获得积分0
33秒前
ppy完成签到 ,获得积分10
34秒前
Nariy完成签到,获得积分10
35秒前
35秒前
csuxxm发布了新的文献求助10
36秒前
科研通AI2S应助疏桐采纳,获得10
40秒前
40秒前
42秒前
伊橙发布了新的文献求助10
42秒前
44秒前
lulu完成签到 ,获得积分10
46秒前
46秒前
ann发布了新的文献求助10
47秒前
爆米花应助zyyyy采纳,获得10
49秒前
50秒前
53秒前
wwww完成签到 ,获得积分10
53秒前
学习的鹿完成签到,获得积分10
53秒前
56秒前
声声慢发布了新的文献求助10
57秒前
59秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Discourse, Identities and Genres in Corporate Communication 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359630
求助须知:如何正确求助?哪些是违规求助? 2982355
关于积分的说明 8703259
捐赠科研通 2664021
什么是DOI,文献DOI怎么找? 1458787
科研通“疑难数据库(出版商)”最低求助积分说明 675243
邀请新用户注册赠送积分活动 666331