Chest x‐ray images: transfer learning model in COVID‐19 detection

2019年冠状病毒病(COVID-19) 肺炎 学习迁移 一致性(知识库) 人工智能 灵敏度(控制系统) 支持向量机 医学 计算机科学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 传输(计算) 模式识别(心理学) 数学 机器学习 核医学 爆发 病理 内科学 电子工程 并行计算 传染病(医学专业) 工程类 疾病
作者
S. Mao,Saltanat Kulbayeva,Mikhail Osadchuk
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
标识
DOI:10.1111/jep.14215
摘要

Abstract Rationale, Aims and Objectives This research aims to develop an effective algorithm for diagnosing COVID‐19 in chest X‐rays using the transfer learning method and support vector machines. Method In total, data was collected from 10 clinics, including both large city hospitals and smaller medical institutions. This ensured a diverse range of geographical and demographic information in the sample. An extensive data set was collected, including 10,000 chest X‐ray images. 5000 images represent normal cases, 3993 images represent pneumonia cases, and 1007 images represent COVID‐19 cases. Machine learning methods were applied to develop a classification model, and the results were compared with seven state‐of‐the‐art models and a lightweight CNN architecture. Results The results showed that the proposed method achieves high accuracy values (Accuracy): 0.95 for COVID‐19, 0.89 for pneumonia, and 0.92 for normal images ( p < 0.05). Comparison with other models demonstrates statistically significant superiority of our method in accuracy across all three classes. The EfficientNet‐B0 model surpasses our method only in accuracy for normal images with p < 0.01, confirming the advantages of our method. Our method demonstrates high sensitivity values (Sensitivity): 0.96 for COVID‐19, 0.88 for pneumonia, and 0.93 for normal images ( p < 0.05), outperforming most of the compared models. Correlation analysis showed Pearson coefficients of 0.92, 0.89, and 0.94 for COVID‐19, pneumonia, and normal images, respectively, confirming a high degree of consistency between predicted and true class labels. In addition, the model was validated on external datasets to assess its generalizability. This validation confirmed its high level of effectiveness in a variety of clinical settings. Conclusion This study confirms the importance of applying machine learning methods in medical applications and opens new perspectives for early diagnosis of infectious diseases. The practical application of the obtained results can enhance the efficiency of diagnosis and control the spread of COVID‐19, as well as contribute to the development of innovative methods in medical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏天发布了新的文献求助10
1秒前
星辰大海应助积极太清采纳,获得10
1秒前
2秒前
科研通AI5应助许诺采纳,获得10
3秒前
3秒前
4秒前
5秒前
优雅的老姆完成签到,获得积分10
7秒前
anle完成签到 ,获得积分10
7秒前
8秒前
熙欢发布了新的文献求助10
8秒前
9秒前
小蘑菇应助phil采纳,获得10
9秒前
Rocc完成签到,获得积分10
9秒前
h3m完成签到 ,获得积分10
10秒前
李木头发布了新的文献求助10
10秒前
13秒前
15秒前
realwd发布了新的文献求助10
16秒前
18秒前
周凡淇发布了新的文献求助10
18秒前
18秒前
Z_Miaom完成签到,获得积分10
19秒前
积极太清发布了新的文献求助10
20秒前
20秒前
英俊的铭应助结实天玉采纳,获得10
20秒前
22秒前
22秒前
22秒前
tomorrow完成签到 ,获得积分10
24秒前
phil发布了新的文献求助10
25秒前
27秒前
VV发布了新的文献求助10
27秒前
27秒前
研友_nV2ROn发布了新的文献求助10
27秒前
etc发布了新的文献求助10
28秒前
rym完成签到 ,获得积分10
28秒前
welldown完成签到,获得积分10
28秒前
化身孤岛的鲸完成签到,获得积分10
28秒前
赘婿应助ZL采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4963030
求助须知:如何正确求助?哪些是违规求助? 4222824
关于积分的说明 13151995
捐赠科研通 4007272
什么是DOI,文献DOI怎么找? 2193356
邀请新用户注册赠送积分活动 1207013
关于科研通互助平台的介绍 1119222