Graph Multi-Convolution and Attention Pooling for Graph Classification

计算机科学 联营 人工智能 图形 模式识别(心理学) 卷积(计算机科学) 理论计算机科学 人工神经网络
作者
Yuhua Xu,Junli Wang,Mingjian Guang,Changjun Jiang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tpami.2024.3443253
摘要

Many studies have achieved excellent performance in analyzing graph-structured data. However, learning graph-level representations for graph classification is still a challenging task. Existing graph classification methods usually pay less attention to the fusion of node features and ignore the effects of different-hop neighborhoods on nodes in the graph convolution process. Moreover, they discard some nodes directly during the graph pooling process, resulting in the loss of graph information. To tackle these issues, we propose a new Graph Multi-Convolution and Attention Pooling based graph classification method (GMCAP). Specifically, the designed Graph Multi-Convolution (GMConv) layer explicitly fuses node features learned from different perspectives. The proposed weight-based aggregation module combines the outputs of all GMConv layers, for adaptively exploiting the information over different-hop neighborhoods to generate informative node representations. Furthermore, the designed Local information and Global Attention based Pooling (LGAPool) utilizes the local information of a graph to select several important nodes and aggregates the information of unselected nodes to the selected ones by a global attention mechanism when reconstructing a pooled graph, thus effectively reducing the loss of graph information. Extensive experiments show that GMCAP outperforms the state-of-the-art methods on graph classification tasks, demonstrating that GMCAP can learn graph-level representations effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助thomas采纳,获得10
刚刚
满意白山完成签到,获得积分10
1秒前
aifeeling发布了新的文献求助10
1秒前
1秒前
xly发布了新的文献求助10
2秒前
刘耿耿完成签到,获得积分10
2秒前
ZMmmm应助CC采纳,获得20
2秒前
2秒前
ru发布了新的文献求助10
2秒前
汉堡包应助淡淡寄风采纳,获得30
2秒前
2秒前
shanshanshan发布了新的文献求助10
2秒前
3秒前
3秒前
JamesPei应助xsx采纳,获得10
3秒前
拼搏听寒发布了新的文献求助30
4秒前
怕黑安发布了新的文献求助10
4秒前
张宇宁完成签到 ,获得积分10
5秒前
5秒前
bkagyin应助萌仔采纳,获得10
5秒前
5秒前
小谢发布了新的文献求助10
6秒前
霸气的尔云完成签到,获得积分10
7秒前
szyt4018发布了新的文献求助10
7秒前
充电宝应助唯美采纳,获得10
7秒前
木增完成签到,获得积分10
7秒前
8秒前
CC完成签到,获得积分10
8秒前
简默发布了新的文献求助10
9秒前
图图完成签到,获得积分10
9秒前
9秒前
Linda发布了新的文献求助30
10秒前
wanci应助仇沅采纳,获得10
11秒前
11秒前
橙子发布了新的文献求助10
11秒前
中级中级发布了新的文献求助10
11秒前
yessay发布了新的文献求助10
12秒前
拼搏听寒完成签到,获得积分10
12秒前
Akim应助细腻依云采纳,获得10
12秒前
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3255124
求助须知:如何正确求助?哪些是违规求助? 2897420
关于积分的说明 8296898
捐赠科研通 2566583
什么是DOI,文献DOI怎么找? 1393797
科研通“疑难数据库(出版商)”最低求助积分说明 652653
邀请新用户注册赠送积分活动 630239