耐久性
材料科学
竹子
复合材料
镁
微观结构
多孔性
冶金
作者
Shanshan Wu,Qiang Fang,Huagang Zhang,Jiaojiao Yang,Zhengrong Zhou
标识
DOI:10.1016/j.cscm.2024.e03504
摘要
Bamboo scraps/magnesium oxychloride composites (BS/MOC) is a new low-carbon and eco-friendly building material, which is composed of magnesium oxychloride cement (MOC) as the matrix and bamboo scraps as the reinforcing materials. However, the poor strength and durability of BS/MOC under special environmental conditions seriously restrict its application range. To solve the above problems, citric acid (CA), D-gluconic acid sodium salt (GS), and styrene-acrylate emulsion (SAE) were used as modifiers to improve BS/MOC properties. The effect of modifier addition on the mechanical strength and durability of BS/MOC was investigated under dry-wet cycling environments. The phase composition, microstructure, pore structure, and Clˉ concentration of BS/MOC were characterized by XRD, TGA, SEM, MIP, and ICS-600. The results showed that CA and GS improved the interface adhesion between bamboo scraps and MOC matrix, and both inhibited the hydration reaction of the residual MgO and the hydrolysis of phase 5 crystals, resulting in good mechanical properties and microstructural stability of BS/MOC under dry-wet cycles. GS outperformed CA in refining pore structure, improving mechanical properties and durability of BS/MOC under identical dry-wet cycles. Conversely, the addition of SAE increased initial defects and interfacial transition zones in the BS/MOC matrix, and increased the total porosity and the harmful pores content, which negatively affected the mechanical properties and durability of BS/MOC.
科研通智能强力驱动
Strongly Powered by AbleSci AI