作者
Michael A. Plotkin,Marc Labroli,Jeffrey W. Schubert,Anthony W. Shaw,Kelly-Ann S. Schlegel,Richard Berger,Andrew Cooke,Robert P. Hayes,Kira A. Armacost,Keith Kinek,Paula M. Krosky,Christine Burlein,Meng Shi,Edward DiNunzio,Edward M. Murray,Sony Agrawal,Maria Madeira,Amy Flattery,Huifang Yao,Andrew Leithead,William Rose,Christopher D. Cox,David M. Tellers,Philip M. McKenna,Izzat T. Raheem
摘要
Herpesvirus infections are ubiquitous, with over 95% of the adult population infected by at least one strain. While most of these infections resolve without treatment in healthy individuals, they can cause significant morbidity and mortality in immunocompromised, stem cell, or organ transplant patients. Current nucleoside standards of care provide meaningful benefit but are limited due to poor tolerability, resistance, and generally narrow spectrum of activity. Herpesviruses share a conserved DNA polymerase, the inhibition of which is validated as an effective strategy to disrupt viral replication. By utilizing a non-nucleoside inhibitor of the viral DNA polymerase, we sought to develop agents covering multiple herpesviruses (e.g., CMV, VZV, HSV1/2, EBV, and HHV6). Herein is described the invention of an oxazolidinone class of broad-spectrum non-nucleoside herpes antiviral inhibitors. A lead compound (