Detection of ERBB2 and CEN17 signals in fluorescent in situ hybridization and dual in situ hybridization for guiding breast cancer HER2 target therapy

荧光原位杂交 原位 乳腺癌 人工智能 人表皮生长因子受体2 计算机科学 原位杂交 癌症 计算生物学 雅卡索引 鉴定(生物学) 模式识别(心理学) 医学 生物 内科学 基因 化学 基因表达 遗传学 有机化学 渔业 植物 染色体
作者
Ching-Wei Wang,Muhammad-Adil Khalil,Yun-Lian Lin,Yu-Ching Lee,Tai-Kuang Chao
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:141: 102568-102568
标识
DOI:10.1016/j.artmed.2023.102568
摘要

The overexpression of the human epidermal growth factor receptor 2 (HER2) is a predictive biomarker in therapeutic effects for metastatic breast cancer. Accurate HER2 testing is critical for determining the most suitable treatment for patients. Fluorescent in situ hybridization (FISH) and dual in situ hybridization (DISH) have been recognized as FDA-approved methods to determine HER2 overexpression. However, analysis of HER2 overexpression is challenging. Firstly, the boundaries of cells are often unclear and blurry, with large variations in cell shapes and signals, making it challenging to identify the precise areas of HER2-related cells. Secondly, the use of sparsely labeled data, where some unlabeled HER2-related cells are classified as background, can significantly confuse fully supervised AI learning and result in unsatisfactory model outcomes. In this study, we present a weakly supervised Cascade R-CNN (W-CRCNN) model to automatically detect HER2 overexpression in HER2 DISH and FISH images acquired from clinical breast cancer samples. The experimental results demonstrate that the proposed W-CRCNN achieves excellent results in identification of HER2 amplification in three datasets, including two DISH datasets and a FISH dataset. For the FISH dataset, the proposed W-CRCNN achieves an accuracy of 0.970±0.022, precision of 0.974±0.028, recall of 0.917±0.065, F1-score of 0.943±0.042 and Jaccard Index of 0.899±0.073. For DISH datasets, the proposed W-CRCNN achieves an accuracy of 0.971±0.024, precision of 0.969±0.015, recall of 0.925±0.020, F1-score of 0.947±0.036 and Jaccard Index of 0.884±0.103 for dataset 1, and an accuracy of 0.978±0.011, precision of 0.975±0.011, recall of 0.918±0.038, F1-score of 0.946±0.030 and Jaccard Index of 0.884±0.052 for dataset 2, respectively. In comparison with the benchmark methods, the proposed W-CRCNN significantly outperforms all the benchmark approaches in identification of HER2 overexpression in FISH and DISH datasets (p<0.05). With the high degree of accuracy, precision and recall , the results show that the proposed method in DISH analysis for assessment of HER2 overexpression in breast cancer patients has significant potential to assist precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恩善发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
兔兔完成签到 ,获得积分10
2秒前
zwh完成签到,获得积分10
2秒前
Onlyyou完成签到 ,获得积分10
2秒前
彼岸发布了新的文献求助10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得30
4秒前
xjcy应助科研通管家采纳,获得10
4秒前
keKEYANTONG应助花园宝宝采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
4秒前
xjcy应助科研通管家采纳,获得10
4秒前
jia发布了新的文献求助10
5秒前
椿上春树发布了新的文献求助10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
活力小夏应助科研通管家采纳,获得60
5秒前
pluto应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
嘉嘉941216应助科研通管家采纳,获得20
6秒前
xjcy应助科研通管家采纳,获得20
6秒前
恋空完成签到 ,获得积分10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257808
求助须知:如何正确求助?哪些是违规求助? 2899627
关于积分的说明 8306997
捐赠科研通 2568927
什么是DOI,文献DOI怎么找? 1395373
科研通“疑难数据库(出版商)”最低求助积分说明 653057
邀请新用户注册赠送积分活动 630868