Detection of ERBB2 and CEN17 signals in fluorescent in situ hybridization and dual in situ hybridization for guiding breast cancer HER2 target therapy

荧光原位杂交 原位 乳腺癌 人工智能 人表皮生长因子受体2 计算机科学 原位杂交 癌症 计算生物学 雅卡索引 鉴定(生物学) 模式识别(心理学) 医学 生物 内科学 基因 化学 基因表达 遗传学 有机化学 渔业 植物 染色体
作者
Ching-Wei Wang,Muhammad-Adil Khalil,Yun-Lian Lin,Yu-Ching Lee,Tai-Kuang Chao
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:141: 102568-102568
标识
DOI:10.1016/j.artmed.2023.102568
摘要

The overexpression of the human epidermal growth factor receptor 2 (HER2) is a predictive biomarker in therapeutic effects for metastatic breast cancer. Accurate HER2 testing is critical for determining the most suitable treatment for patients. Fluorescent in situ hybridization (FISH) and dual in situ hybridization (DISH) have been recognized as FDA-approved methods to determine HER2 overexpression. However, analysis of HER2 overexpression is challenging. Firstly, the boundaries of cells are often unclear and blurry, with large variations in cell shapes and signals, making it challenging to identify the precise areas of HER2-related cells. Secondly, the use of sparsely labeled data, where some unlabeled HER2-related cells are classified as background, can significantly confuse fully supervised AI learning and result in unsatisfactory model outcomes. In this study, we present a weakly supervised Cascade R-CNN (W-CRCNN) model to automatically detect HER2 overexpression in HER2 DISH and FISH images acquired from clinical breast cancer samples. The experimental results demonstrate that the proposed W-CRCNN achieves excellent results in identification of HER2 amplification in three datasets, including two DISH datasets and a FISH dataset. For the FISH dataset, the proposed W-CRCNN achieves an accuracy of 0.970±0.022, precision of 0.974±0.028, recall of 0.917±0.065, F1-score of 0.943±0.042 and Jaccard Index of 0.899±0.073. For DISH datasets, the proposed W-CRCNN achieves an accuracy of 0.971±0.024, precision of 0.969±0.015, recall of 0.925±0.020, F1-score of 0.947±0.036 and Jaccard Index of 0.884±0.103 for dataset 1, and an accuracy of 0.978±0.011, precision of 0.975±0.011, recall of 0.918±0.038, F1-score of 0.946±0.030 and Jaccard Index of 0.884±0.052 for dataset 2, respectively. In comparison with the benchmark methods, the proposed W-CRCNN significantly outperforms all the benchmark approaches in identification of HER2 overexpression in FISH and DISH datasets (p<0.05). With the high degree of accuracy, precision and recall , the results show that the proposed method in DISH analysis for assessment of HER2 overexpression in breast cancer patients has significant potential to assist precision medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助smile采纳,获得10
刚刚
1秒前
natsu发布了新的文献求助10
1秒前
2秒前
田様应助植物采纳,获得10
2秒前
2秒前
Ava应助苏若之采纳,获得10
3秒前
科研通AI6应助mia218采纳,获得10
3秒前
3秒前
俭朴涑发布了新的文献求助10
4秒前
4秒前
背后寻云发布了新的文献求助10
5秒前
久久发布了新的文献求助10
5秒前
5秒前
小银发布了新的文献求助10
5秒前
pinkie发布了新的文献求助10
5秒前
tong完成签到 ,获得积分10
5秒前
6秒前
6秒前
吴鹏完成签到,获得积分10
8秒前
辣子鱼发布了新的文献求助10
8秒前
8秒前
汪鸡毛完成签到 ,获得积分10
8秒前
8秒前
9秒前
可爱的函函应助weilong采纳,获得10
9秒前
隐形曼青应助zjy采纳,获得10
9秒前
9秒前
真好发布了新的文献求助10
9秒前
香蕉觅云应助哈哈采纳,获得10
10秒前
11秒前
小蘑菇应助风云鱼采纳,获得10
11秒前
希望天下0贩的0应助wang采纳,获得10
12秒前
一一发布了新的文献求助10
12秒前
12秒前
丘比特应助胡渣有点茂盛采纳,获得10
12秒前
万能图书馆应助牛马采纳,获得10
12秒前
12秒前
zpp发布了新的文献求助30
12秒前
SA发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552469
求助须知:如何正确求助?哪些是违规求助? 4637218
关于积分的说明 14648146
捐赠科研通 4579088
什么是DOI,文献DOI怎么找? 2511302
邀请新用户注册赠送积分活动 1486474
关于科研通互助平台的介绍 1457556