计算机科学
卷积神经网络
稳健性(进化)
人工智能
模式识别(心理学)
特征提取
变压器
利用
级联
数据挖掘
遥感
地理
物理
基因
量子力学
生物化学
色谱法
电压
化学
计算机安全
作者
Weiming Li,Lihui Xue,Xueqian Wang,Gang Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:61: 1-15
被引量:9
标识
DOI:10.1109/tgrs.2023.3272694
摘要
Change detection (CD) in optical remote sensing images has significantly benefited from the development of deep convolutional neural networks (CNNs) due to their strong capability of local modeling in bi-temporal images. In addition, the recent rise of transformer modules leads to the improvement of global feature extraction of bi-temporal remote sensing images. Note that the existing simple cascade of deep CNNs and transformer modules shows limited CD performance on small changed areas due to deficiencies of multi-scale information therein. To address the aforementioned issue, we propose a new CNN-transformer network (ConvTransNet) with multi-scale framework to better exploit global-local information in optical remote sensing images. In our ConvTransNet, we propose the parallel-branch ConvTrans block as the basic component to generate global-local features, i.e., adaptively integrates the global features summarized by a transformer-based branch and the local features extracted by a convolution-based branch, providing better identifiability between changed areas and unchanged areas. By fusing multiple global-local features with different scales, our ConvTransNet improves the robustness of the CD performance on changed areas with different sizes, especially small changed areas. Experiments on two public change detection datasets of optical remote sensing images, i.e., LEVIR-CD and CDD, demonstrate that our ConvTransNet achieves enhanced CD performance than the other commonly used methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI